Реферат: Механизмы и несущие конструкции радиоэлектронных средств

w = dv/dtau = (domega/dtau) x r + omega x (dr/dtau) = eps x r + omega x omega x r = (w) t + (w) n . (3.1)

Вектор тангенциального ускорения (w) t направлен по касательной к траектории движения, нормального w (n) - к центру вращения.

Модуль вектора полного ускорения

w = [ (eps*ro) **2 + ( (omega**2) *ro) **2]**0.5 = ro*[eps**2 + omega**4]**0.5, (3.2)

где ro - радиус вращения.

3.2.4. Сложное движение звена. Его обычно представляют суммой двух более простых движений: относительного в подвижной системе координат K' и переносного вместе с этой системой относительно системы координат K, которая обычно неподвижна (рис. 3.3) .

3.2.5. Скорости и ускорения при сложном движении. При сложном (абсолютном) движении приращение вектора скорости (v) a:

d (v)a = d (v)o + dfi x r' + (v) r*dtau,

следовательно, абсолютная скорость (v) a есть сумма переносной (v) e и относительной (v) r скоростей:

(v)a = (v) o + omega x r' + (v) r = (v) e + (v) r . (3.3)

Приращение вектора ускорения при сложном движении:

d (w)a = d (w)o + d (omega x r') + dfi x (v) r + (w) r*dtau ;

d (omega x r') = eps x r' + omega x omega x r' + omega x (v) r ;

dfi x (v) r = omega x (v) r.

Таким образом, ускорение при сложном движении

(w)a = (w) o + eps x r' + omega x omega x r' + 2*omega x (v) r + (w) r. (3.4)

Составляющие абсолютного ускорения:

(w)e = (w) o + eps x r' + omega x omega x r' - переносное ускорение;

(w)k = 2*omega x (v) r - ускорение Кориолиса;

(w)r - относительное ускорение.

3.3. Аксоидные поверхности.

3.3.1. Мгновенные оси и аксоидные поверхности. Сложное движение звена можно представить последовательностью мгновенных поворотов вокруг мгновенных осей, меняющих свое положение в пространстве (рис.3.4) . Последовательные положения мгновенных осей в системах координат K (неподвижной) и K' (подвижной) образуют две аксоидные поверхности - неподвижную и подвижную, в каждый момент времени контактирующие друг с другом по прямой линии - мгновенной оси. В общем случае аксоиды катятся друг по другу со скольжением. Формы аксоидных поверхностей определяются видами переносного и относительного движений.

3.3.2. Гиперболоидные аксоиды. Переносное движение совершается вокруг оси omega1, относительное - вокруг оси omega2, оси скрещиваются под углом Sigma (рис. 3.5 и 3.6) . Мгновенная ось - Omega, вдоль нее

аксоиды проскальзывают со скоростью v . Расстояние O1O2 = a, углы delta1

и delta2 определяют по формулам:

a = (v/Omega) [ (1+ 2i*cos (Sigma) + i**2) / (i*sin (Sigma) )], (3.5)

где Omega = omega1 + omega2 ; i = omega1/omega2 ;

O1P/O2P = 1/ (i*cos (Sigma) = (omega2/omega1) /cos (Sigma) ; (3.6)

delta1 = arc tg [sin (Sigma) / (i*cos (Sigma) ] ;

delta2 = Sigma - delta1 . (3.7)

К-во Просмотров: 1047
Бесплатно скачать Реферат: Механизмы и несущие конструкции радиоэлектронных средств