Реферат: Моделирование ЭВМ
vihod3.dat
Вывод:
1) С увеличением числа сдвигов характеристики чисел улучшаются.
2) Из приведенных 3-ех файлов самые качественные числа находятся в
файле vihod3.dat , т. к. числа в последовательности достаточно
независимы. Но в то же время нет согласованности по обеим
критериям.
3.4.1.2. Программный способ
При программном способе псевдослучайные числа нам необходимо сформировать методом умножения.
Суть метода: выбирается два n - разрядных числа X1 и X2. X1><0, X2><0. Затем X1 умножаем на X2 и получаем некоторое значение Y , у которого 2n - разрядов: Y=X1*X2. Из 2n - разрядного Y выбираем n - разрядное Х1 и Х2 и вновь полученные Х1, Х2 умножаем друг на друга. Далее все повторяется до тех пор пока не будет сформировано необходимое количество чисел.
Программа формирования ГСК на основе метода умножения приведена в Приложении № 2.
Полученные числа записываются в файл vi_gpsc1.dat и анализируются с помощью программы analize.
Определение числовых характеристик
№ | Характеристика | Теоретич. значение | Статистич. значение |
1 | Мин.значение совокуп. | 0.00068 | |
2 | Макс.значение совокуп | 0.99995 | |
3 | Математич. ожидание | 0.5 | 0.4928 |
4 | Дисперсия | 0.083 | 0.07822 |
5 | Сред.квад.отклонение | 0.1887 | 0.2796 |
Аппроксимация статистического распределения теоретической функцией
Проверка соответствия чисел последовательности требуемому распределению дает следующие результаты:
Критерий Хи-Квадрат :
Х2=12.9
С доверительной вероятностью 0.166 можно утверждать о согласованности теоретических и статистических данных.
Критерий Колмогорова :
Максимальная разность max| F(x)-F*(x) | = 0.0885
С доверительной вероятностью 0.999 можно утверждать о согласованности теоретических и статистических данных.
Определение характеристик корреляции
r(t)
1
0 t
5
Рис. 3. График изменения коэфф.
корреляции
Вывод: