Реферат: Моделирование ЭВМ
( m=0; D=1 )
1
xi=- ---- ln zi
l
Исследование последовательности нормально распределенных ПСЧ.
(Программа в приложении № 3)
Определение числовых характеристик
№ |
Характеристика |
Теоретическое значение |
Статистическое значение |
1 | Мин.знач.совокупности | 11 | 12.31 |
2 | Макс.знач.совокуп-ти | 24 | 25.23 |
3 | Мат. ожидание | 16 | 16.02 |
4 | Дисперсия | 2 | 2.07 |
5 | Сред.квадр.отклонение | 1 | 1.439 |
6 | Коэфф.ассиметрии | 0 | 0.35 |
7 | Эксцесс | 0 | 2.716 |
Аппроксимация стат. распределения теоретической функцией.
Проверка соответствия чисел последовательности требуемому распределению дает следующие результаты:
Критерий Хи-Квадрат :
Х2=0.0000813
С доверительной вероятностью 0.999 можно утверждать о согласованности теоретических и статистических данных.
Критерий Колмогорова :
Максимальная разность max| F(x)-F*(x) | = 0.0823
С доверительной вероятностью 0.999 можно утверждать о согласованности теоретических и статистических данных.
Определение характеристик корреляции
r(t)
1
0 t
5
Рис. 4. График изменения коэффициента корреляции.
Вывод:
Полученная последовательность ПСЧ, имеющая нормальный закон распределения, удовлетворяет предъявленным требованиям по качеству и может быть использована в задачах моделирования, т. к.