Реферат: Начала термодинамики
Другая формулировка II-го начала, также являющаяся обобщением экспериментальных данных, была введена Клаузиусом в 1850г.: “Тепло не может самопроизвольно перейти от менее нагретого тела к более нагретому”. Положим, что эта формулировка эквивалентна более поздней формулировке Клаузиуса о существовании функции состояния энтропии.
Пусть имеется некоторая система, состоящая из двух термостатов с температурами , между которыми проходит теплообмен. – количество тепла, отдаваемое термостатом с меньшей температурой, а – количество тепла, получаемое термостатом с большей температурой.
Поскольку процесс совершается самопроизвольно, то суммарнаяработа, совершаемая за цикл должна быть равна нулю. Это возможно только в том случае, если адиабаты 2-3 и 4-1 пересекаются. Тогда
, , ,
т.е., в принципе было бы возможным “подстроить” характеристики процесса таким образом, чтобы
.
Однако совершить такой процесс не представляется возможным, поскольку, как уже было показано, адиабата (изоэнтропа) соответствует однозначной функцией состояния и, соответственно, пересечение адиабаты невозможно.
С положением о непересечении адиабат связана еще одна формулировка II-го начала термодинамики, предложенная в 1909 г. Каратеодори и признаваемая многими авторами наиболее удачной: вблизи каждого термодинамического состояния всегда есть состояние, перейти в которое посредством квазистатического адиабатического процесса невозможно.
Например, не существует адиабат, переводящих систему из состояния 2 через состояние 3 в состояние 1 (рис.3) или адиабат 4- Д, 1-Д, 3-С, 2-С на рис. 4.
Введенный принцип получил название принципа адиабатической недостижимости Каратеодори. Наглядно его можно проиллюстрировать с помощью семейства непересекающихся поверхностей с фиксированными значениями энтропии термодинамической системы.
Далее воспользуемся II-м началом термодинамики для уточнения калорического эффекта термодинамического процесса (2.5). Запишем:
. (2.16)
Выражение (2.16) и подобные ему, некоторые авторы называют обобщенной формулировкой I и II начала термодинамики.
Преобразуем дифференциал , и подставим его в (2.5):
.
Из последнего равенства следует:
, , .
(2.17)
Учитывая, что
,
получаем
.
Выполняя преобразования в последнем равенстве, имеем:
. (2.18)
Аналогичным образом, учитывая
,
Находим:
.
Последнее выражение можно переписать в виде: