Реферат: Начала термодинамики

Следует отметить, что в ряде проблем недостаточно ограничиваться только значениями приращения энтропии или ее производными. Поэтому становится актуальным определение энтропийной константы (или ). Однако ни I, ни II–е начало термодинамики не отвечает на вопрос о ее значении. Эту проблему удалось решить только с возникновением (открытием) III начала термодинамики, которое будет рассмотрено далее.

Кроме расчета калорического эффекта термодинамических процессов, определения внутренней энергии термодинамической системы, ее удельной энтропии и химического потенциала совместное использование I и II начал термодинамики позволяют рассчитать теплоемкость любых процессов. Обозначим через К. любой термодинамический процесс, геометрически изображенный в виде линии на поверхности термодинамических состояний . Тогда для удельной теплоемкости можем записать:

. (2.28)

Учитывая (2.26), запишем:

. (2.29)

Так, если – изобарический процесс (), получаем:

.

При записи последнего соотношения использовано известное равенство:

. (2.30)

Доказать справедливость (2.30) самостоятельно.

3. В формулировке М.Планка третье начало термодинамики имеет вид краевого (предельного) условия для дифференциальных уравнений (2.26), определяющих энтропию. При стремлении температуры к нулю энтропия системы также стремится к нулю:

. (2.31)

Таким образом, энтропийная константа в принципе оказывается определенной, а вся формальная схема макроскопической термодинамики – полностью замкнутой.

III-е начало установлено Вальтером Неристом в 1906 г. как обобщение экспериментальных данных по термодинамике гальванических элементов в форме, так называемой, тепловой теоремы Нериста:

Всякий термодинамический процесс, протекающий при фиксированной температуре , сколь угодно близкой к нулю () не сопровождался бы изменением энтропии S:

. (2.32)

Справедливость выражения (2.32) может быть доказана на основании положений равновесной статической теории.

Формулировка Паули является более жесткой, поскольку она требует равенства нулю не приращения энтропии, а ее абсолютной величины (при стремлении температуры к абсолютному нулю). Эта формулировка является аксиомой. Однако она более удобна для практического использования.

Далее рассмотрим основное следствие, вытекающее из III-го начала термодинамики.

Рассмотрим калорическое уравнение состояния. Пренебрегая внешними полями, проинтегрируем выражение (2.26) для удельной теплоемкости:

по температуре с условием . Тогда запишем:

. (2.33)

Разложим вблизи теплоемкость в ряд по степеням :

(2.34)

Здесь (может не являться целым числом). Подставляя (2.34) в (2.33) – выполняя интегрирование вблизи , получим:

Поскольку, согласно II началу термодинамики, энтропия является однозначной функцией термодинамического состояния, т.е. конечной величиной при конечных (а не величиной всюду равной бесконечности), то . Тогда для систем в области низких температур можем записать

, (2.35)

К-во Просмотров: 506
Бесплатно скачать Реферат: Начала термодинамики