Реферат: Обработка результатов экспериментов и наблюдений

( мм ).

Для надежности a = 0,95 и n = 5 ta = 2,78. Абсолютная погрешность измерения Dх:

Dх = ta × Sа = 2,78 × 0,0116 = 0,0322 мм.

Результат измерения можно представить в виде

(14,818 - 0,032) мм £ а £ (14,818 + 0,032) мм

или сохраняя в величине погрешности одну значащую цифру

(14,82 - 0,03) мм £ а £ (14,82 + 0,03) мм,

т.е. 14,79 мм £ а £ 14,85 мм или а = (14,82 ± 0,03) мм.

Относительная погрешность

εа = .

Теперь найдем абсолютную и относительную погрешность этих измерений при a = 0,99.

В этом случае ta = 4,60. Тогда

Dх = ta ×Sa = 4,60×1,16×10-2 = 5,34×10-2 ( мм ).

Следовательно а = (14,82 ± 0,05) мм

εа = .

Видно, что с увеличением надежности границы доверительного интервала возросли, а точность результата уменьшилась.

Проведем расчет погрешностей для этих же пяти измерений, незаконно полагая, что s2 = S2 n (что при n = 5 ошибочно). Для этого используем распределение Гаусса (а не Стюарта). При a = 0,95 ka = .

Это дает возможность определить

Dх = ka ×Sa = 1,96×1,16×10-2 » 2×10-2 ( мм ),

т.е. погрешность получилась меньше примерно на 30%. Если по этой величине погрешности определить величину надежности при ta = ka , то из таблицы коэффициентов Стьюдента получим a < 0,90 вместо заданной a = 0,95. Следовательно при малом числе измерений n применение закона нормального распределения с s2 = S2 n вместо распределения Стьюдента приводит к уменьшению надежности результата измерений.

Найдем средние значения и погрешности следующих пяти измерений

i

аi , мм

аi - ао , мм

i - ао )2 , мм2

1

14, 81

0, 01

0, 0001

К-во Просмотров: 576
Бесплатно скачать Реферат: Обработка результатов экспериментов и наблюдений