Реферат: Образцы исследования элементарных функций, содержащих обратные тригонометрические функции

Имеем:

Откуда

2. Аналогично

, где 0 < x < 1, 0 < y < 1

, где 0 < x < 1, 0 < y < 1

Формулы сложения аркфункций от произвольных аргументов.

1. Выразить сумму через арксинус

По определению арксинуса

и ,

откуда

Для дуги γ возможны следующие три случая:

Случай 1:

Если числа x и y разных знаков или хотя бы одно из них равно нулю, то имеет место случай 1.

В самом деле, при и , имеем:

, и ,

откуда

При x > 0, y > 0 для дуги γ имеет место одна из следующих двух систем неравенств:

а) б)

Необходимым и достаточным признаком, позволяющим отличить один от другого случаи а) и б), является выполнение неравенства:

в случае а) и в случае б)

В самом деле, взаимно исключающие друг друга соотношения а) и б) влекут за собой взаимно исключающие следствия и (соответственно), а потому эти следствия служат необходимыми и достаточными признаками наличия данных соотношений.

Вычислив , получим:

К-во Просмотров: 1014
Бесплатно скачать Реферат: Образцы исследования элементарных функций, содержащих обратные тригонометрические функции