Реферат: Операторы в вейвлетном базисе

Белорусский государственный университет

Факультет прикладной математики и информатики

Кафедра математической физики

ГРОМОВА МАРИЯ МИХАЙЛОВНА

ОПРЕАТОРЫ В ВЕЙВЛЕТНОМ БАЗИСЕ

Курсовая работа студентки 4 курса

Научный руководитель:

Глушцов Анатолий Ильич

кафедры МФ

кандидат физ.-мат. наук

Минск 2004

СОДЕРЖАНИЕ

ВВЕДЕНИЕ………..………………………………………………………..3

1. МНОГОМАСШТАБНЫЙ АНАЛИЗ И ВЕЙВЛЕТЫ………………...5

2. БЫСТРОЕ ВЕЙВЛЕТ-ПРЕОБРАЗОВАНИЕ….……………………...9

3. ДВУМЕРНЫЕ ВЕЙВЛЕТЫ…………………………………………..12

4. МАТРИЧНЫЕ ОПЕРАЦИИ………………………………………….13

4.1. Матричное умножение………………………………………...13

4.2. Обращение матрицы…………………………………………...16

4.3. Вычисление экспоненты, синуса и косинуса от матрицы.….16

ЛИТЕРАТУРА……………………………………………………………18

ВВЕДЕНИЕ

Вейвлет-преобразование сигналов (wavelet transform) , теория которого оформилась в начале 90-х годов, является не менее общим по областям своих применений, чем классическое преобразование Фурье. Принцип ортогонального разложения по компактным волнам состоит в возможности независимого анализа функции на разных масштабах ее изменения. Вейвлет-представление сигналов (функций времени) является промежуточным между полностью спектральным и полностью временным представлениями.

Компактные волны относительно независимо были предложены в квантовой физике, физике электромагнитных явлений, математике, электронике и сейсмогеологии. Междисциплинарные исследования привели к новым приложениям данных методов, в частности, в сжатии образов для архивов и телекоммуникаций, в исследованиях турбулентности, в физиологии зрительной системы, в анализе радарных сигналов и предсказании землетрясений. К сожалению, объем русскоязычной научной литературы по тематике вейвлет-преобразований (да и нейронных сетей) относительно невелик.

Базовая идея восходит к временам 200-летней давности и принадлежит Фурье: аппроксимировать сложную функцию взвешенной суммой простых функций, каждая из которых, в свою очередь, получается из одной функции-прототипа. Эта функция-прототип выполняет роль строительного блока, а искомая аппроксимация получается комбинированием одинаковых по структуре блоков. При этом, если "хорошая" аппроксимация получается при использовании небольшого числа блоков, то тем самым достигается значительное уплотнение информации. В качестве таких блоков Фурье использовал синусоиды с различными периодами.

Что прежде всего отличает вейвлет-анализ от анализа Фурье? Основным недостатком Фурье-преобразования является его "глобальная" чувствительность к "локальным" скачкам и пикам функции. При этом модификация коэффициентов Фурье (например, обрезание высоких гармоник с целью фильтрации шума) вносит одинаковые изменения в поведение сигнала на всей области определения. Это особенность оказывается полезной для стационарных сигналов, свойства которых в целом мало меняются со временем.

При исследовании же нестационарных сигналов требуется использование некоторых локализованных во времени компактных волн, коэффициенты разложения по которым сохраняют информацию о дрейфе параметров аппроксимируемой функции. Первые попытки построения таких систем функций сводились к сегментированию сигнала на фрагменты ("окна") с применением разложения Фурье для этих фрагментов. Соответствующее преобразование - оконное преобразование Фурье - было предложено в 1946-47 годах Jean Ville и, независимо, Dennis Gabor. В 1950-70-х годах разными авторами было опубликовано много модификаций времени-частотных представлений сигналов.

В конце 70-х инженер-геофизик Морли (Jean Morlet) столкнулся с проблемой анализа сигналов, которые характеризовались высокочастотной компонентой в течение короткого промежутка времени и низкочастотными колебаниями при рассмотрении больших временных масштабов. Оконные преобразования позволяли проанализировать либо высокие частоты в коротком окне времени, либо низкочастотную компоненту, но не оба колебания одновременно. В результате был предложен подход, в котором для различных диапазонов частот использовались временные окна различной длительности. Оконные функции получались в результате растяжения-сжатия и смещения по времени гаусиана. Морли назвал эти базисные функции вейвлетами (wavelets) - компактными волнами. В дальнейшем благодаря работам Мейера (Yves Meyer), Добеши (Ingrid Daubechies), Койфмана (Ronald Coifman), Маллы (Stephane Mallat) и других теория вейвлетов приобрела свое современное состояние.

Среди российских ученых, работавших в области теории вейвлетов, необходимо отметить С.Б. Стечкина, И.Я. Новикова, В.И. Бердышева.

1. МНОГОМАСШТАБНЫЙ АНАЛИЗ И ВЕЙВЛЕТЫ

Определение 1. Многомасштабный анализ ( multiresolutional analysis) – разложение гильбертова пространства L2 ( R d ) , d ³1 , в последовательность замкнутых подпространств

, (1.1)

обладающих следующими свойствами:

1. , и полно в L2 ( R d ) ,

2. Для любого f Î L2 ( R d ) , для любого j Î Z , f( x) Î Vj тогда и только тогда, когда

f(2 x) Î Vj -1 ,

3. Для любого f Î L2 ( R d ) , для любого k Î Z d , f( x) Î V0 тогда и только тогда, когда f( x- k) Î V0 ,

4. Существует масштабирующая ( scaling) функция j Î V0 , что { j( x- k)} k Î Z d образует

базис Ритца в V0 .

Для ортонормальных базисов можно переписать свойство 4 в виде:

4’. Существует масштабирующая функция j Î V0 , что { j( x- k)} k Î Z d образует ортонормальный базис в V0 .

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 320
Бесплатно скачать Реферат: Операторы в вейвлетном базисе