Реферат: Операторы в вейвлетном базисе
Замечание. Если М =1 , тогда система (4.15)-(4.16) имеет единственное решение, но интеграл (4.11) может не быть абсолютно сходящимся. Для базиса Хаара () , мы получаем простейший конечный дифференциальный оператор .
Замечание 2. Заметим, что выражения (4.12) и (4.13) для и () могут быть упрощены с помощью смены порядка суммирования в (5.10) и (5.11) и введения коэффициентов корреляции , и . Выражение для особенно просто: .
Для доказательства Предложения 4.1 можно обратиться к [2].
Для решения системы (4.15)-(4.16) можно также воспользоваться итерационным алгоритмом. Начать можно с и , а дальше итерировать, используя (4.15) для вычисления .
4.2 Оператор d n / dx n в вейвлетном базисе
Так же как и для оператора d/ dx , нестандартная форма оператора dn / dxn полностью определяется своим отображением на подпространство V0 , т.е. коэффициентами
, l Î Z , (4.18)
если интеграл существует.
Предложение 4.2. 1. Если интеграл в выражении (4.18) существует, тогда коэффициенты , l Î Z удовлетворяют следующей системе линейных алгебраических уравнений
(4.19)
(4.20)
где дано в формуле (4.17).
2. Пусть M≥ ( n+1)/2 , где М – число исчезающих моментов. Если интеграл в (4.18) существует, тогда система (4.19)-(4.20) имеет единственное решение с конечным числом нулевых коэффициентов , а именно для . Также для четных n
(4.21)
(4.22)
(4.23)
а для нечетных n
(4.24)
(4.25)
Замечание 3. Если M≥ ( n+1)/2 , тогда решение линейной системы в Предложении 2 может существовать, когда интеграл в (4.18) не является абсолютно сходящимся.
Интегральные уравнения второго рода
Линейное интегральное уравнение Фредгольма есть выражение вида
,
где ядро , а неизвестная функция f( x) и функция в правой части , . Для простоты будем рассматривать интервал и введём следующее обозначение для всех и :
Предположим, что { φ1 , φ1 ,…} – ортонормальный базис для ; ядро представимо в этом базисе в следующем виде:
где коэффициенты Kij вычисляются по формуле
,
Аналогично функции f и g представимы в виде
, ,
где коэффициенты fi и gi вычисляются по формулам:
, , i=1,2,…
Интегральное уравнение в этом случае соответствует бесконечной системе уравнений
, i=1,2,…
Представление ядра может быть урезано до конечного числа слагаемых, что приводит к представлению интегрального оператора R :
, , ,
который аппроксимирует K . Тогда интегральное уравнение аппроксимируется системой n уравнений с n неизвестными:
, i=1,2,…, n
ПРИЛОЖЕНИЕ 1
function [a,r]=dif_r(wname)
[LO_D,HI_D,LO_R,HI_R] = wfilters(wname);
% вычисление коэффициентов a2k-1
len=length(LO_D);
a=zeros(len-1,1);
for k=1:len-1;