Реферат: Оптимизационные модели межотраслевого баланса
Рассмотрим, как повлияет включение дополнительных способов (вектора Х2 ) на интенсивности применения оптимальных (базисных) способов (вектор X1 . Добавив к вектору b 1 произведение – A12 Х2 , получим на основе (11)
,
откуда
(19)
Заметим также, что формула изменения максимального числа комплектов конечной продукции при включении вектора Х2 имеет вид:
(20)
Формулы (19) и (20) справедливы при сохранении базиса оптимального плана, т. е. при условиях
С помощью оценок способов (18) можно изучать целесообразность включения в условия народнохозяйственной задачи новых способов. Новый способ φ будет эффективным (т. е. может войти в оптимальный план), если Δφ ≥ 0. Это условие может быть использовано для проектирования новых эффективных производственных способов.
Рассмотренные направления и методы анализа оптимального плана являются универсальными для всех линейных оптимизационных моделей. Однако в более частных моделях экономико-математический анализ может выявлять и специфические свойства оптимальных решений.
§2. ОПТИМИЗАЦИОННЫЕ МОДЕЛИ НА ОСНОВЕ МАТРИЦЫ МЕЖОТРАСЛЕВОГО БАЛАНСА
Общая линейная оптимизационная модель построена на основе матрицы таких производственных способов, что каждый из них может выпускать несколько видов продукции, каждый вид продукции может выпускаться несколькими способами.
Далее мы рассмотрим более частные оптимизационные модели, сохраняющие некоторые специфические допущения модели межотраслевого баланса: сначала – модели, в которых каждый способ выпускает только один продукт и каждый продукт выпускается только одним способом, а затем – модели, в которых сохраняется только первое из указанных допущений. Такая последовательность анализа моделей выбрана для того, чтобы «перекинуть мост» между моделями межотраслевого баланса и оптимизационными моделями народного хозяйства и проследить изменение свойств решений (сбалансированных и оптимальных) при изменении предпосылок модели и включении в нее новых условий.
Модель межотраслевого баланса как частный случай оптимизационных моделей
Оптимизационные модели по сравнению с балансовыми представляют собой более совершенный тип моделей социалистической экономики. Однако было бы неправильно противопоставлять их друг другу. Во-первых, основные условия балансовых моделей обязательно включаются в оптимизационные модели. Во-вторых, балансовые модели могут интерпретироваться и исследоваться как частный случай оптимизационных моделей.
Попытаемся сформулировать модель межотраслевого баланса на языке оптимизационных задач. Рассмотрим систему уравнений межотраслевого баланса производства и распределения продукции совместно с ограничением по трудовым ресурсам производственной сферы:
(21)
Основная задача плановых расчетов с помощью этой модели состоит в том, чтобы при заданном векторе Y 0 = () и имеющихся трудовых ресурсах L найти вектор необходимых объемов производства X = (xj ). Покажем, что эту задачу можно представить в виде задачи линейного программирования:
(22)
Эта задача отличается от (21) только тем, что допускается получение конечной продукции сверх заданных минимальных объемов, а затраты трудовых ресурсов минимизируются. Очевидно, что реальным экономическим условиям отвечают только такие решения X * = (x * ), при которых .
Задаче (22) соответствует двойственная задача, с помощью которой находятся оптимальные оценки продукции :
(23)
Оптимальный план X * задачи (22) характеризуется следующими свойствами:
· он единственный;
· если Y 0 > 0 (или Y 0 ≥ 0 и А – неразложимая матрица), то Х* > 0;
· балансы производства и распределения продукции выполняются строго как равенства, т. е. излишки конечной продукции не производятся;
· оптимальный план X * не зависит от коэффициентов целевой функции tJ ≥ 0.
На рис. 1 видно, что оптимальный план всегда является вершиной «клюва» при любых допустимых наклонах целевой функции. Обе задачи (и прямая, и двойственная) всегда имеют единственное решение, если матрица А продуктивна и Y 0 ≥ 0. При этом решение прямой оптимизационной задачи сводится к решению системы уравнений и поэтому оно не зависит от значений коэффициентов минимизируемой функции. Решение двойственной задачи находится из системы уравнений и поэтому оно не зависит от коэффициентов минимизируемой функции. При этом оптимальные оценки продукции равны коэффициентам полных трудовых затрат.
Равенство функционалов прямой и двойственной задачи имеет место при любых положительных значениях tj и . Оно означает, что суммарная оценка всей конечной продукции равна сумме трудовых затрат в народном хозяйстве.