Реферат: Оптимизационные модели межотраслевого баланса
(31)
где F = f (Е – А) – 1 – матрица коэффициентов полных затрат ресурсов, .
Оптимальное решение этой модели всегда существует и является единственным. Оптимальный план Y * есть точка касания наиболее удаленной от начала координат поверхности безразличия и выпуклого многогранника, образованного условиями . Если эта поверхность безразличия касается вершины многогранника, то это означает полное использование нескольких ресурсов. Очевидно, что в случае применения ЦФП вероятность того, что точкой оптимума будет вершина многогранника, выше, чем в случае применения ассортиментного критерия. Однако вполне возможно, что максимум u (Y ) достигается на одной из граней многогранника, т. е. при полном использовании только одного ресурса.
Таким образом, общим свойством рассмотренных в этом параграфе моделей является то, что оптимальный план чаще всего достигается при полном использовании только одного ресурса. А это означает, что только один вид ресурсов влияет на формирование оптимального решения. Данное свойство не адекватно экономической реальности; оно обусловлено недостатком моделей.
В моделях (24) , (27) , (30) почти отсутствуют возможности маневрирования ресурсами, имеющими различную дефицитность. По каждому виду продукции задается только один производственный способ, а поэтому технология производства не реагирует на выявляющиеся в процессе оптимизации соотношения наличия ресурсов и потребностей в них. Благодаря корректировке исходных данных на основе анализа оптимальных решений этот недостаток можно преодолевать лишь отчасти.
Напрашивается вывод о том, что оптимизационные модели народного хозяйства должны включать условия выбора между различными способами- производства одноименной продукции.
§3. ОПТИМИЗАЦИОННЫЕ МЕЖОТРАСЛЕВЫЕ МОДЕЛИ С ПРОИЗВОДСТВЕННЫМИ СПОСОБАМИ
Первый вариант модели (минимизация затрат труда на производство заданной конечной продукции).
Построим модель, представляющую собой непосредственное обобщение модели межотраслевого баланса, записанной в форме (22) . В модели предусматривается возможность выбора между различными производственными способами. Пусть каждый вид продукции производится несколькими способами , где Tj = {1, ... , sj }. При этом каждым способом выпускается только один продукт. Введем новые обозначения:
– объем производства продукции j способом j ;
– коэффициент прямых затрат продукции i на производство единицы продукции j способом j ;
– затраты труда на единицу продукции j , производимой способом j .
Модель имеет вид:
(32)
Модель (32) всегда имеет решение, если выполняются условия, аналогичные условию продуктивности матрицы коэффициентов прямых материальных затрат модели межотраслевого баланса. Например, одно допустимое решение может быть получено, если включить в план по одному способу для каждого вида продукции, а все остальные переменные считать равными нулю. Так может быть составлено систем уравнений межотраслевого баланса производства и распределения продукции, каждая из которых имеет решение, если матрица продуктивна.
Анализ модели позволяет выявить ряд ее интересных специфических свойств.
Теорема 1 . При положительном векторе конечной продукции Y 0 > 0 производятся все продукты и каждый продукт производится только одним способом.
Доказательство. Напомним, что мы исходим из предположения, что оптимальный план – единственный. Введем в условия дополнительные переменные Δyi (излишки конечной продукции сверх минимально необходимых объемов ), превращающие неравенства в равенства.
В каждом i -м уравнении
положительными являются только коэффициенты при переменных Х. Но поскольку все , то и все , т. е. оптимальном плане должны производиться все виды продуктов.
Максимальное число положительных переменных в оптимальном плане равно п (числу уравнений). Следовательно, в каждой сумме переменных положительной может быть только одна переменная. Иначе говоря, в оптимальном плане каждый продукт производится только одним способом.
Следствие. Из теоремы следует, что поскольку число возможных положительных переменных исчерпывается переменными способов производства, то все Δyi в оптимальном плане равны нулю. Иными словами, оптимальный план обращает исходные неравенства строго в равенства.
Введем дополнительные обозначения: X * – оптимальный план модели (каждая его компонента есть интенсивность применения какого-то «лучшего» способа производства); A * – матрица коэффициентов материальных затрат, составленная из способов, которые вошли в оптимальный план.
Матрица А* аналогична матрице А межотраслевого баланса с той лишь разницей, что вместо средневзвешенных коэффициентов из разных способов в ней представлены коэффициенты только «лучших» способов. Матрицы A * и (Е – А* ) обладают теми же экономико-математическими свойствами, что и матрицы межотраслевого баланса. Среди этих свойств отметим, в частности, существование матрицы (Е – А* )–1 ≥ 0. Элементы матрицы (Е – А* )–1 являются коэффициентами полных потребностей в выпуске продукции для получения единицы конечной продукции в оптимальном плане. Оптимальный план удовлетворяет следующей системе уравнений:
(E – A ) X * = Y 0 или X * = (E – A )–1 Y 0 .
Теорема 2. Базис оптимального плана, а следовательно, и выбор «лучших» способов остаются постоянными при любых изменениях положительного вектора Y 0 .
Доказательство. Для того чтобы базис оптимального плана оставался неизменным при переменном векторе Y 0 , достаточно – в соответствии с (15) ,– чтобы выполнялось условие
(E – A * )–1 Y 0 ≥ 0.