Реферат: Основні поняття теорії ймовірностей

Визначте ймовірність:

а) вірогідної події

б) неможливої події.

Відповідь: а) – 1, б) – 0.

Один французький рицар, кавалер де Маре, був пристрасним гравцем у кості. Він увесь час намагався розбагатіти за рахунок гри і для цього придумав різні складні правила, які, як йому здавалося, приведуть його до мети. В той час ( ХVІІ ст..) бажання розбагатіти за допомогою азартних ігор охопило, як хвороба, багатьох людей.

Де Маре придумав, зокрема, такі правила гри. Він пропонував кидати одну кость чотири рази підряд і бився об заклад що при цьому хоча б один раз випаде цифра 6; якщо ж цього не станеться – ні разу не випаде 6 очок, то виграє його противник. Де Маре вважав, що він буде частіше вигравати, ніж програвати, але все ж таки звернувся до свого знайомого, одного з найбільших математиків ХVІІ ст. – Блеза Паска ля ( 1623 – 1662) із проханням прорахувати, яка ймовірність виграшу в придуманій нім грі.

Попробуйте прорахувати й ви

При кожному окремому киданні ймовірність випадання 6 дорівнює 1/6. Ймовірність того, що не випаде 6 очок дорівнює 5/6.

Далі: кидаємо кості двічі. Повторимо дослід, що полягає в дворазовому киданні скажімо N раз. Тоді приблизно в 5/6 із цих Nвипадків на кость, кинутої перший раз, не випаде 6. Із числа цих 5/6 (6/6N)=(5/6)2 N випадків не випаде 6 і при другому киданні кості.

Таким чином, ймовірність того що при дворазовому киданні кості жодного разу не випаде 6 очок, дорівнює:

(5/6)2 =26/36

точно так розраховується, що ймовірність того, що жодного разу не випаде 6 очок при триразовому киданні кості дорівнює:

(5/6)3 =125/216.

Нарешті, ймовірність того, що при чотириразовому киданні жодного разу не випаде 6 , дорівнює:

(5/6)4 =625/1296

Таким чином, для рицаря де Мере ймовірність програшу дорівнювала:

625/1294, тобто менше ½

тобто ймовірність виграшу була більша половини. Значить, при кожній грі більше половини шансів було за те, що лицар виграє. При багаторазовому повторі гри він майже напевне залишався у виграші.

Дійсно, чим більше лицар грав, тим більше він вигравав. Кавалер де Маре був дуже задоволений і вирішив, що відкрив правильний спосіб збагачення. Однак, поступово іншим гравцям стало зрозуміло, що ця гра для них не корисна і вони перестали грати з де Маре. Необхідно було придумати якісь інші правила і де Маре придумав нову гру. Але на цей раз лицар помилився. Чим більше він грав тим більше розорявся і залишився бідняком.

Найцікавіше в цьому історичному анекдоті те, що завдяки таким ось практичним запитам з’явилася теорія розрахунку випадкових явищ. У XVIIіXVIIIст.. учені дивились на ці приклади, як на цікаві випадки застосування математичних знань до явищ, які не мають широкого розповсюдження. Адже, гравець у кості, який мріє про багатство, ніяк не заслуговує, щоб на допомогу йому була створена спеціальна наука.

Нині, ж основні поняття, методи, теореми та формули теорії ймовірностей ефективно використовують в техніці, економіці, у теоріях надійності та масового обслуговування, у плануванні та організації виробництва, у страховій та податковій справах, у соціології, у демографії та охороні здоров’я.

К-во Просмотров: 360
Бесплатно скачать Реферат: Основні поняття теорії ймовірностей