Реферат: Основы теории надежности

Методы расчета надежности для систем с восстановлением.

Метод расчета надежности с использованием теории Марковских процессов.

Пусть имеется некоторая система s. Говорят, что в s происходит случайный процесс, если он к стечением времени под влиянием случайных факторов (например, отказов и восстановлений отдельных компонентов) переходит из одного состояния в другое.

Такая система называется с дискретным состоянием, если она имеет конечное количество возможных состояний и переход из одного состояния в другое осуществляется скачком. Для описания случайного процесса, проистекающего в системе пользователя вероятностями состояний Р0 (t), P1 (t) …Pk (t) где Pi (t) (i=0,…k) – вероятность того, что система в момент t находится в состоянии si .

Случайный процесс, протекающий в s называется процессом в дискретном времени, если переходы из одного состояния возможны в определенные периоды времени. Если переходы возможны в любой момент времени, то процесс называется непрерывным.

Случайный процесс называется Марковским (если процесс без последствия) если все Р. процесса в будущем зависят от того, в котором состоянии находится процесс настоящем, и не зависят от того, каким образом этот процесс протекал в прошлом.

Марковский процесс представляет собой Марковскую цепь с k – различным состоянием и может быть предоставлен матрицей значений переходных вероятностей.

Марковская цепь в состоянии i на очередном шаге перейдет в состояние j. Переход вероятности не зависит от номера шага, т.е. процесс перехода стационарен во времени то есть Марковская цепь является дискретным случайным процессом с дискретным временем из которого переход осуществляется через некоторый интервал времени D t из одного состояния в другое счетное число состояний. Длительность пребывания в состоянии si является случайной величиной для которого Fk (t) состояний. Все распределения Fk (t) подчинены экспоненциальному закону.

Марковский процесс обладает характерными свойствами, определенными в первую очередь экспоненциальными распределениями времени пребывания в каждом состоянии.

1) Марковский процесс обладает свойством стационарного перехода в другую вероятность и длительность пребывания в том или ином состоянии не зависит от того в какой момент времени рассматривается этот процесс.

2) Свойство оригинальности - за бесконечный промежуток времени не может произойти более одного перехода из одноного состояния в другое.

3) Обладает свойством последствия.

Марковский процесс удобно описывать ориентировочно графом переходов вершины которого, представляют собой состояние, а) веса ребер соответствующих интенсивности перехода из одного состояния в другое. Зная переходную вероятность Pij и параметр li распределение времени пребывания процесса в i состоянии можно легко найти веса по формуле: lij = Pij · li .

Если при описании процесса перехода система из одного состояния в состояние сохраняет Марковское свойство, то пребыван?

К-во Просмотров: 654
Бесплатно скачать Реферат: Основы теории надежности