Реферат: Полуточка модель скорости
(20)
Оставив члены первого порядка малости по :
|
(21) |
Используя определение полуточки
получим:
|
(22) |
Положив точку функцией величины и сравнив с разложением её в ряд Тейлора в окрестности , получим:
|
(23) |
Это выражение и является определением скорости точки , если она движется во времени , испытывая в каждый его момент преобразование Пуанкаре:
|
(24) |
Выражение (23) является скалярно-векторно сопряжённым самому себе:
|
(25) |
То есть абсолютное приращение точки выполняется несмотря на произвольность величины так, что точка остается сама себе скалярно-векторно сопряжённой.
Отметим также, что в силу свойства точки верно равенство:
|
(26) |
Далее...
Придерживаясь модели полной группы Пуанкере, мы должны считать величины и дуальными бикватернионами, имеющими 16 компонент. В силу требования скалярно-векторной сопряжённости самой себе точка часть компонентов имеет нулевыми.
Для понимания дальнейшего вывода представим величины и в виде, явно содержащем разделение на главную и дуальную части:
| |
|
(27) |