Реферат: Построение математических моделей при решении задач оптимизации

х £ 0, у £ 0.

Общая прибыль фабрики может быть выражена целевой функцией

F = 3х + 8у. (2)

Выразим у через x из уравнения 200х + 100у = 3400 и подставим полученное выражение вместо у в неравенства и целевую функцию:

х +7(34 –2х) £ 32

2х + 5(34 – 2х) £ 42

3х + 4( 43 – 2х) £ 62

у = 43 – 2х (3)

х ³ 0

34 – 2х ³ 0,

F = 3х + 8(34 – 2х) = -13+272 (4)

Преобразуем систему ограничений (3):

11

13х ³ 206 х³ 5 13

8х ³ 218 х ³ 16

4

5х ³ 174 х £ 4 5

16 £ х £ 17

5х ³ 74 Û 0 £ х £ 17 Û

у = 34 – 2х

0 £ х £ 17

у =34 - 2х у = 34 – 2х

Очевидно, что F =272 –3х принимает наибольшее значение, если х=16.

Fнаиб = 272 – 13 * 16 – 64 (тыс. руб.)

Отдельно следует остановиться на случаях использования ЭВМ при решении задач оптимизации. Рассмотрим это на примере решения следующей задачи:

Задача 4.

В обработку поступила партия из 150 досок длиной по 7.5 м. каждая, для

изготовления комплектов из 4-х деталей. Комплект состоит из:

· 1 детали длиной 3 м.

· 2-х деталей длиной 2 м.

· 1 детали длиной 1.5 м

Как распилить все доски, получив наибольшее возможное число комплектов?

Решение.

Для решения этой задачи воспользуемся редактором электронных таблиц EXCEL

К-во Просмотров: 1088
Бесплатно скачать Реферат: Построение математических моделей при решении задач оптимизации