Реферат: Построение решения задачи Гурса для телеграфного уравнения методом Римана
Нехай дано рівняння
(1.1)
Треба знайти розв’язок цього рівняння в області D(рис. 1)
якщо задані крайові умови
u(x0 , t) = j(t);
u(x, t0 ) = y(x), (1.2)
при цьому функції j(t) та y(x) ддиференцьовані, та задовільнюють умові спряження
j(t0 ) = y(x0 ).
Така задача називається задачею з даними на характкристиках, або задачею Гурса.
D
Рис. 1
§2 . Приведення до канонічного вигляду
гіперболічного рівняння другого порядку
з двома незалежними змінними. Характеристики.
Розглянемо рівняння другого порядку з двома незалежними змінними
, (2.1)
де коефіцієнти А, В та С – функції від x та y, які мають неперервні похідні до другого порядку включно у області WÌ R. За допомогою перетворення змінних
x = j(х, у), h = y(х, у),
яке припускає обернене перетворення, ми отримуємо нове рівняння, еквівалентне рівнянню (2.1). При цьому будемо мати
(2.2)
підставляючи значення похідних з(2.2) в (2.1), будемо мати:
, (2.3)
де
,
а функція не залежить від других похідних. Замітимо, що якщо рівняння (2.1) було лінійно, то й рівняння (2.3) буде лінійним.
Рівняння (2.1) пов’язано з рівнянням:
Аdy2 +2Вdydx+Сdx2 =0 (2.4)
яке має назву рівнянням характеристичних змінних, а його інтеграли – характеристиками для рівняння (2.1).
(2.5)
Нехай j(x,y)=const є загальним інтегралом рівняння (2.4), тоді покладемо x=j(x,y) і коефіцієнт буде дорівнювати нулю, якщо y(x,y)= const другий, відмінний від першого інтеграл, то заміною h=y(x,y) ми доб’ємось, щоб =0.
Як видно з формули (2.5), рівняння (2.4) може мати різні розв’язки, один розв’язок або не мати розв’язків взагалі в залежності від знаку В2 –АС.
Рівняння (2.1) у деякій точці М(x,y) будемо називати:
1) рівнянням гіперболічного типу, якщо В2 –АС>0;
2) рівнянням параболічного типу, якщо В2 –АС=0;
3) рівнянням параболічного типу, якщо В2 –АС<0.
Відмітимо, що при довільній заміні змінних (2.2) виконується рівність
тобто при будь – якому перетворенні змінних, у якого якобіан відмінний від нуля, тип рівняння (2.1) не змінюється.
Розглянемо випадок, коли рівняння (2.1) має гіперболічний тип у деякій області GÌW. У цій області характеристичне рівняння має два різних загальних інтеграла j(x,y)=const та y(x,y)=const.
Зробимо заміну описану вище: x=j(x,y) та h=y(x,y), отримаємо:
(2.6)
де
Рівняння (2.6) називається канонічною формою рівнянь гіпер-болічного типу. Покажемо, що характеристиками рівняння (2.6) будуть прямі, паралельні координатним осям, тобто x = const, h = const.
Для (2.6) рівнянням характеристичних змінних буде
dxdh = 0.
Звідки будемо мати
x = const, h = const.
§3 . Формула Остроградського-Гаусса.
Нехай P(x, y, z), Q(x, y, z) и R(x, y, z) – три функциї змінних x, y, z, які задані у області D’ и мають в ній неперервні похідні першого порядку по x, по y та по z.