Реферат: Построение решения задачи Гурса для телеграфного уравнения методом Римана

де

K = L + 2.

В правих частинах цих нерівностей з точністю до множників пропорційності стоять загальні члени розкладання функції е2 KLM . Ці оцінки показують, що послідовності функцій

збігаються рівномірно до граничних функцій, котрі ми зазначимо

Переходячи до границі під знаком інтегралу у формулах (4.6) та (4.7), будемо мати:

Звідси випливають рівності

,

які дозволяють встановити, що функція u(x, t) задовільнює інтегро-диференційному рівнянню

(4.5)

а також диференційному рівнянню (4.3), що перевіряється безпосереднім диференціюванням рівняння (4.5) по x та по t. Функція

задовільнює також додатковим умовам.

Доведемо тепер єдиність розв’язку задачі (4.3)-(4.4). Припустимо існування двох розв’язків u1 (x, t) та u2 (x, t). Отримуємо для їх різниці

U(x, t) = u1 (x, t) – u2 (x, t)

однорідне інтегро-диференційне рівняння

Позначаючи далі через H1 верхню межу абсолютних величин

, ,

для 0 £ x £ L, 0 £ t £ L та повторюючи оцінки, які було проведено для функцій zn (x, t), переконуємось у справедливості нерівності

для будь-якого значення n. Звідси і випливає

U(x, t) º 0 або u1 (x, t) º u2 (x, t),

що і доводить єдиність розв’язку задачі Гурса.

§5 . Спряжені диференційні оператори.

Розглянемо лінійний диференційний оператор 2-го порядку

,

де Aij , Bi и C є двічі диференцюємими функціями x1 ,x2 ,…,xn .

Назвем оператор

спряженим з оператором Lu.

Якщо оператор L співпадає з спряженим йому оператором M, то такий оператор називають самоспряженим.

Розглянемо різницю

.

При отриманні цього виразу ми додали суму

,

але вона дорівнює нулю, так що значення виразу не змінилося.

Одже, вираз vLu – uMv являє собою суму частинних похідних по xi від деяких виразів Pi , тобто

,

де

.

Розглянемо тепер деякий n-мірний об’єм W, який обмежений кусочно-гладкою поверхнею S.

Користуючись формулою Остроградського-Гауса (3.2), будемо мати

, (5.1)

де cos(nx1 ), cos(nx2 ),… - направляючі косінуси внутрешньої нормалі до S.

К-во Просмотров: 297
Бесплатно скачать Реферат: Построение решения задачи Гурса для телеграфного уравнения методом Римана