Реферат: Построение решения задачи Гурса для телеграфного уравнения методом Римана
Знайдемо функцію Рімана для рівняння
(x > 0) (7.4)
приведемо рівняння (7.4) до канонічного вигляду, для чого складемо рівняння характерстик
xdt2 – dx2 = 0
це рівняння має два різних інтеграла
+ = C1 , - = C1 ,
слід, треба ввести нові змінні x та h за формулами
x = + , h = - (x >0)
приєднаємо до цих рівностей ще одну залежність
тоді рівняння (7.4) перетвориться до канонічного вигляду:
при цьому будемо мати a = 0, b = 0.
Для відшукання функії Рімана нам потрібно знайти частинний розв’язок спряженого рівняння
(7.5)
який задовольняв би слідуючим умовам на характеристиках, проведених через точку (x1 , h1 )
(7.6)
Будемо шукати розв’язок рівняння (7.1) у вигляді v = G(s), де
s =.
Тоді для G(s) ми отримаємо слідуюче рівняння:
s(1-s)G’’(s) + (1-2s)G’(s) - G(s) = 0
Це рівняння частинним випадком гіпер геометрічного рівняння Гаусса
s(1-s)y’’ + [g - (1 + a + b)s]y’ - aby = 0
при a = b = , g = 1.
Рівняння Гаусса припускає частинний розв’язок у вигляді гіпергеометрічного ряду
який збігається абсолютно при |s| < 1.
Звідки ясно, що взявши
v = G(s) = F= 1 +
ми задовільним рівнянню (7.5) та усмовам (7.6). Слід, функція
і є функцією Рімана.
Приклад 3.
Знайдемо функцію Рімана для телеграфного рівняння
якщо ввести нову функцію u(x, t) поклавши
(7.7)
то рівняння (7.7) більш просту форму
, (7.8)
де a = , b = .
За допомогою заміни змінних
x = (x + at), h = (x - at)
приведемо рівняння (7.8) до канонічного вигляду
при цьому маємо a = b = 0.
Функція Рімана повинна задовільнювати спряженому рівнянню
, (7.9)
та на характеристиках x = x1 , h = h1 дорівнює одиниці.