Реферат: Преобразование Фурье
(6)
так как , то интеграл (6) сходится равномерно при t³0, и дифференцирование законно. Совершенно так же доказывается бесконечная дифференцируемость функции u( x, t) по t и x .
Дифференцируя (5) дважды по x, устанавливаем:
(7)
Из формул (6),(7) вытекает, что функция u( x, t) удовлетворяет уравнению (1). Справедливость условия (2) очевидна. Теорема доказана.
§4. Фундаментальное решение уравнения теплопроводности.
Преобразуем формулу (5) к более удобному ”явному” виду. Для этого запишем ее в интегралах
меняем порядок интегрирования
(8)
В формуле (8) внутренний интеграл есть преобразование Фурье от функции при значении аргумента –( x- z) , поэтому из (9.2) имеем
Подставляя это в (8), получим
(9)
Функцию
называют фундаментальным решением уравнения теплопроводности. Легко проверяются следующие свойства этой функции:
§5. Решение задачи с непрерывной ограниченной начальной функцией.
Теорема 3. Пусть j(z) ограничена и непрерывна на вещественной оси. Тогда формула (9) дает решение задачи (1),(2).
Доказательство. Продифференцируем (9) под знаком интеграла
(10)
Чтобы обосновать законность такого дифференцирования, достаточно показать равномерную сходимость по x интеграла (10), для чего произведем замену
Из ограниченности функции j следует равномерная сходимость интеграла как по xÎR, так и по t>e.
Совершенно так же доказывается бесконечная дифференцируемость функции u(x, t) по x и t при t>0. Из свойства 3) фундаментального решения следует, что u есть решение уравнения (1).
Для доказательства (2) снова сделаем замену переменной интегрирования в (9):
Так как последний интеграл сходится равномерно по x и t, то возможен предельный переход под знаком интеграла
Теорема доказана.
§6. Единственность решения в классе ограниченных функций.