Реферат: Проблемы русской национальной школы и изучения русской математики
3) умножит сумму на 5;
4) припишет к полученному числу справа ноль.
Ведущий, осведомившись о результате, отнимает от названного ему числа 250, полученная разность разность всегда выражается трехзначным числом, две последние цифры которого - нули, цифра сотен позволяет назвать задуманный день недели.
РЕШЕНИЕ: какой бы день недели не был задуман, ему соответствует однозначное число, обозначим его через j, выполним над числом j указанные действия, записывая решения в виде числовой формулы:
1) j * 2;
2) j * 2 + 5;
3) ( j * 2 + 5 ) * 5;
4) ( ( j * 2 + 5 ) * 5 ) ) * 10;
так как умножение числа на 10 равносильно приписыванию нуля в
конце этого числа, но (( j * 2 + 5) * 5)*10 = 100 * j + 250.
Вычитая из этого числа 250, получаем 100 * j,
где j = 1, 2, 3, 4, 5, 6, 7 - есть номер задуманного числа
12. Д В Е Н А Д Ц А Т Ь Ч Е Л О В Е К.
Двенадцать человек несут 12 хлебов: каждый мужчина несет по 2 хлеба, женщина - по половине хлеба, а ребенок по четверти хлеба. Сколько было мужчин, женщин и детей?
РЕШЕНИЕ: подумаем, как могут распределиться 12 хлебов между мужчинами, женщинами и детьми, попробуем мысленно распределить хлеба между ними, сначала дадим всем по половине хлеба, при этом будет роздано 6 хлебов, чтобы удовлетворить условию задачи, нужно раздать оставшиеся 6 хлебов мужчинам, а затем взять у каждого из детей по четверти хлеба и также распределить между мужчин, каждому мужчине до его нормы не хватает полтора хлеба, шесть хлебов по полтора хлеба можно распределить между четырьмя мужчинами, после чего каждый из них будет нести по два хлеба, отсюда следует, что мужчин не менее 5, иначе излишки хлеба, имеющиеся у детей, некому было бы нести, но если бы мужчин было 6, то они сами несли бы весь хлеб, а женщинам и детям ничего бы не осталось, итак, имеется всего 5 мужчин, поэтому мужчине до его нормы не хватает полтора хлеба, и именно эти полтора хлеба нужно собрать по четверти у каждого из детей. Так как полтора хлеба состоят из шести четвертей, то детей имеется всего шестеро и, значит, количество женщин равно 12 - 5 - 6 = 1. Следовательно,хлеба несли 5 мужчин, одна женщина и 6 детей.
. Д В А В О И Н А.
Один воин вышел из города и проходил по 12 верст в день, а другой вышел одновременно и шел так: в первый день прошел 1 версту, во второй день 2 версты, в третий день 3 версты, в четвертый день 4 версты, в пятый день 5 верст и так прибавлял каждый день по одной версте, пока не настиг первого, через сколько дней второй воин настигнет первого?
РЕШЕНИЕ: В первый день второй воин отстает на 12 - 1 = 11 верст, во второй еще на 12 - 2 = 10 верст, в третий еще на 12 - 3 = 9 верст и так далее, на двенадцатый день отставание составит ( 11 + 10 + 9 +...+ 2 + 1 + 0 ) верст, а затем расстояние между ними начнет сокращаться, в 13-й день на 1 версту 13 - 12 = 1, в 14-й день еще на 14 - 12 = 2 версты, в 15-Й день еще на 15 - 12 = 3 версты и наконец в 23-й день на 23 - 12 = 11 верст, на 23-й день расстояние между ними уменьшится на ( 1 + 2 + ... + 10 + 11 ) верст, это значит, что второй воин по прошествии 23 дней достигнет первого.
14. С К О Л Ь К О Я И Ц В Л У К О Ш К Е.
Пришел крестьянин на базар и принес лукошко яиц, торговцы его спросили: "Много ли у тебя в том лукошке яиц?", крестьянин
молвил им так: " Я всего не помню на перечень, сколько в том
лукошке яиц, только помню: перекладывал я те яица в лукошко по
2 яица, то одно лишнее осталось на земле; и я клал в лукошко по
3 яица, то одно же яицо осталось; и я клал по 4 яица, то одно же яицо осталось; и я клал по 5 яиц, то одно яицо же яицо осталось; и я их клал по 6 яиц, то одно же яицо осталось; и я их клал по 7 яиц, то ни одного не осталось, сочти мне, сколько в том лукошке
яиц было?"
РЕШЕНИЕ: задача сводится к нахождению такого числа, которое делится нацело на 7, а при делении на 2,3,4,5,6 дает в остатке 1, если искомое число уменьшить на 1, то получится число делящееся на 2,3,4,5,6 без остатка.
Наименьшее число, которое делится без остатка на числа 2,3,4,5,6 есть 60, нужно значит найти такое число, которое делилось бы на 7 нацело и было бы вместе с тем на 1 больше числа делящегося на 60, рассмотрим числа 61,121,181, 241, 301 и так далее, Первое из написанных чисел, делящееся на 7, есть 301, кроме этого числа, условию задачи удовлетворяют 721, 1141, 1561 и так далее, ряд чисел, удовлетворяющих условию задачи, бесконечен. Каждое из них получается прибавлением к предыдущему 420 - наименьшего числа, делящегося на 4,5,6,7.
15. Д В И Ж Е Н И Е П А Л Ь Ц А.
Это один из способов помочь памяти с помощью пальцев рук запомнить таблицу умножения на 9. Положив обе руки рядом на стол, по порядку занумеруем пальцы обеих рук следующим образом: первый палец слева обозначим 1 , второй за ним- цифрой 2, затем 3,4, ... до десятого пальца, если надо умножить на 9 любое из первых девяти чисел, то для этого, не двигая рук со стола, надо приподнять вверх тот палец, номер которого означает число, на которое умножается 9; тогда число пальцев, лежащих налево от поднятого пальца, определяет число десятков, а число пальцев, лежащих справа от поднятого пальца, обозначает число единиц полученного произведения.