Реферат: Расчет характеристик участка линейного нефтепровода
= 0 (9)
Раскрывая полную производную по времени в подынтегральном выражении по правилу
(10)
приведем уравнение (9) к виду
(11)
В силу произвольности выбора множества W из (9) следует, что подынтегральное выражение должно быть равно нулю.
(12)
Эта формула называется законом сохранения массы в дифференциальной форме.
Для одномерного течения жидкости уравнение примет вид
(13)
Закон сохранения количества движения.
Этот закон гласит: скорость изменения количества движения любой части материальной системы, находящейся в движении, равна сумме всех внешних сил. В математическом виде этот закон запишется так:
(1)
где (2)
Fv – силы обусловленные силовыми полями
Fs – силы действующие на единицу поверхности.
Подставив (2) в (1) получим интегральную форму записи закона сохранения количества движения
. (3)
Это векторное уравнение эквивалентно системе из трех уравнений, отражающих закон сохранения количества движения по каждой из координат х1 , х2 , х3
(4)
Пользуясь правилами дифференцирования интеграла, взятого по изменяющемуся объему и объединяя два слагаемых, получим
. (5)
Учитывая приведем (5) к виду
. (6)
Поскольку это равенство справедливо при произвольном объеме подынтегральное выражение (6) должно быть равно нулю
. (7)
Выражение (7) есть дифференциальная форма записи закона сохранения количества движения.
Для одномерного случая, когда все составляющие сил и скоростей по всем направлениям, кроме оси х1 , равны нулю, уравнения (5) и (7) примет вид
.