Реферат: Решение уравнений, неравенств, систем с параметром (алгебра и начала анализа)
Следовательно, исходная система не имеет решений при , а при
или
имеет хотя бы одно решение.
Ответ: а Î (-¥;-3] È(;+¥).
IV. Решить уравнение
Решение.
Использовав равенство , заданное уравнение перепишем в виде
Это уравнение равносильно системе
Уравнение перепишем в виде
. (*)
Последнее уравнение проще всего решить, используя геометрические соображения. Построим графики функций и
Из графика следует, что при
графики не пересекаются и, следовательно, уравнение не имеет решений.
Если , то при
графики функций совпадают и, следовательно, все значения
являются решениями уравнения (*).
При графики пересекаются в одной точке, абсцисса которой
. Таким образом, при
уравнение (*) имеет единственное решение -
.
Исследуем теперь, при каких значениях а найденные решения уравнения (*) будут удовлетворять условиям
Пусть , тогда
. Система примет вид
Её решением будет промежуток хÎ (1;5). Учитывая, что , можно заключить, что при
исходному уравнению удовлетворяют все значения х из промежутка [3; 5).
Рассмотрим случай, когда . Система неравенств примет вид
Решив эту систему, найдем аÎ (-1;7). Но , поэтому при аÎ (3;7) исходное уравнение имеет единственное решение
.
Ответ:
если аÎ (-¥;3), то решений нет;
если а=3, то хÎ [3;5);
если aÎ (3;7), то ;
если aÎ [7;+¥), то решений нет.
V. Решить уравнение
, где а - параметр. (5)