Реферат: Решение уравнений, неравенств, систем с параметром (алгебра и начала анализа)
При любом а :
Если , то
;
если , то
.
Строим график функции , выделяем ту его часть , которая соответствует
. Затем отметим ту часть графика функции
, которая соответствует
.
По графику определяем, при каких значениях а уравнение (5) имеет решение и при каких – не имеет решения.
Ответ:
если , то
если , то
;
если , то решений нет;
если , то
,
.
VI. Каким условиям должны удовлетворять те значения параметров и
, при которых системы
(1)
и
(2)
имеют одинаковое число решений ?
Решение.
С учетом того, что имеет смысл только при
, получаем после преобразований систему
(3)
равносильную системе (1).
Система (2) равносильна системе
(4)
Первое уравнение системы (4) задает в плоскости хОу семейство прямых, второе уравнение задает семейство концентрических окружностей с центром в точке А(1;1) и радиусом
Поскольку , а
, то
, и, следовательно, система (4) имеет не менее четырех решений. При
окружность касается прямой
и система (4) имеет пять решений.
Таким образом, если , то система (4) имеет четыре решения, если
, то таких решений будет больше, чем четыре.
Если же иметь в виду не радиусы окружностей, а сам параметр а, то система (4) имеет четыре решения в случае, когда , и больше четырех решений, если
.
Обратимся теперь к рассмотрению системы (3). Первое уравнение этой системы задаёт в плоскости хОу семейство гипербол, расположенных в первом и втором квадрантах. Второе уравнение системы (3) задает в плоскости хОу семейство прямых.
При фиксированных положительных а и b система (3) может иметь два, три, или четыре решения. Число же решений зависит от того, будет ли прямая, заданная уравнением , иметь общие точки с гиперболой
при
(прямая
всегда имеет одну точку пересечения с графиком функции
).
Для решения этого рассмотрим уравнение
,