Реферат: Решение уравнений, неравенств, систем с параметром (алгебра и начала анализа)
Теперь решение задачи сводится к рассмотрению дискриминанта D последнего уравнения:
если , т.е. если , то система (3) имеет два решения;
если , то система (3) имеет три решения;
если , то система (3) имеет четыре решения.
Таким образом, одинаковое число решений у систем (1) и (2) – это четыре. И это имеет место, когда .
Ответ:
II. Неравенства с параметрами.
§1. Основные определения
Неравенство
¦(a, b, c, …, k, x)>j(a, b, c, …, k, x), (1)
где a, b, c, …, k – параметры, а x – действительная переменная величина, называется неравенством с одним неизвестным, содержащим параметры.
Любая система значений параметров а = а0, b = b0, c = c0, …, k = k0, при некоторой функции
¦(a, b, c, …, k, x) и
j(a, b, c, …, k, x
имеют смысл в области действительных чисел, называется системой допустимых значений параметров.
называется допустимым значением х, если
¦(a, b, c, …, k, x) и
j(a, b, c, …, k, x
принимают действительные значения при любой допустимой системе значений параметров.
Множество всех допустимых значений х называется областью определения неравенства (1).
Действительное число х0 называется частным решением неравенства (1), если неравенство
¦(a, b, c, …, k, x0)>j(a, b, c, …, k, x0)
верно при любой системе допустимых значений параметров.
Совокупность всех частных решений неравенства (1) называется общим решением этого неравенства.
Решить неравенство (1) – значит указать, при каких значениях параметров существует общее решение и каково оно.
Два неравенства
¦(a, b, c, …, k, x)>j(a, b, c, …, k, x) и (1)
z(a, b, c, …, k, x)>y(a, b, c, …, k, x) (2)