Реферат: Сборник Лекций 2 по Мат.Анализу
Прежде, чем анализировать формулу (3), приведем некоторые понятия и факты из курса векторной алгебры. Пусть в плоскости с системой координат XOY задан направленный отрезок или (что то же самое) вектор, причем точка M0(x0,y0) является его начальной точкой, а M1(x1,y1) конечной точкой. Определим координату вектора по оси OX как число, равное x1 x0, а координату по оси , как число, равное y1 y0. Если задать упорядоченную пару любых чисел a и b, то эти числа можно рассматривать как координаты некоторого вектора в плоскости XOY, причем длина этого вектора определена формулой
,
а тангенс угла наклона вектора к оси OX определяется из формулы tg = b/a (отметим, что зная величину tg , а также знак любого из чисел a и b, мы можем определить угол с точностью до 2 ).
Представление вектора в виде пары его координат будем записывать в виде или . Такое представление имеет одну характерную особенность: оно не определяет местоположение вектора на плоскости XOY. Чтобы его определить, нужно наряду с координатами вектора задавать, например, координаты его начальной точки или, как её можно назвать, точки приложения вектора.
Если заданы два вектора: и , то скалярным произведением этих векторов называется число ( угол между векторами).
В любом курсе векторной алгебры доказывается, что скалярное произведение векторов и равно сумме произведений одноименных координат этих векторов:
= a1b1 + a2b2. (4)
Пусть в некоторой области G плоскости XOY задана функция z = f(x,y), имеющая непрерывные частные производные по обоим аргументам. Градиентом или вектором-градиентом функции f(x,y) в точке (x,y) G называется вектор, который задается формулой
.
Функция f определяет для каждой точки области G вектор-градиент, исходящий из этой точки.
Возвратимся теперь к формуле (3). Ее правую часть мы можем рассматривать, как скалярное произведение векторов. Первый из них вектор-градиент функции z = f(x,y) в точке M0(x0,y0):
.
Второй – вектор . Это вектор, имеющий длину 1 и угол наклона к оси , равный .
Теперь можно сделать вывод, что производная функции z = f(x,y) по направлению, определяемому углом наклона к оси OX, в точке M0(x0,y0) может быть вычислена по формуле
. (5)
Здесь угол между вектором и вектором , задающим направление, по которому берется производная. Здесь также учтено, что .
Из формулы (5) можно сделать очень важное заключение: производная по направлению от функции z = f(x,y) в точке M0(x0,y0) достигает наибольшего значения, если это направление совпадает с направлением вектора-градиента функции в рассматриваемой точке, так как cos 1, и равенство достигается только если = 0 (очевидно, что другие решения уравнения cos = 1 нас в данном случае не интересуют). Иначе можно сказать, что вектор-градиент функции в точке направлен в сторону наискорейшего возрастания функции в этой точке.
Кроме того из формулы (5) следует, что наибольшее значение производной по направлению в точке или наибольшее значение скорости возрастания функции в точке равно длине вектора-градиента функции в этой точке.
Пример. Требуется найти производную функции по направлению, составляющему угол в 60 с осью OX, в точке (1;3).
Найдем частные производные функции: Теперь можно определить градиент функции в точке (1;3): . Принимая во внимание равенство , воспользуемся формулой (4):
.
§5. Экстремум функции двух переменных.
Точка M0(x0,y0) является точкой максимума (минимума) функции z = f(x,y), если найдется такая окрестность точки M0, что для всех точек M(x,y) из этой окрестности выполняется неравенство f(x,y)< f(x0,y0) ( f(x,y)> f(x0,y0)).
Точки максимума и минимума называются точками экстремума.
Сформулируем необходимое условие экстремума.Если в точке экстремума существует первая частная производная (по какому-либо аргументу), то она равна нулю.
Точки экстремума дифференцируемой функции (то есть функции, имеющей непрерывные частные производные во всех точках некоторой области) надо искать только среди тех точек, в которых все первые частные производные равны нулю.
Там, где выполняется необходимое условие, экстремума может и не быть (здесь полная аналогия с функцией одной переменной).