Реферат: Спектральная теория операторов

Спектральная теория операторов

Саранск 2009

СОДЕРЖАНИЕ

Введение………………………..………………………………………………..4

1 Линейный оператор…………………………………………………………...4

1.1 Понятие линейного оператора………………………………………...4

1.2 Линейные преобразования………………………………………….....4

1.3 Сопряжённый и самосопряжённый оператор………………………..5

2 Спектральная теория компактных операторов……………………………...7

2.1 Спектр оператора……………………………………………………...7

2.2 Понятие об ограниченном операторе………………………………­­­...8

2.3 Понятие о компактном операторе…………………………………...13

3 Спектральная теория компактных операторов……………………………….16

3.1 Множество значений компактного оператора……………………........16

3.2 Собственное значение компактного оператора……………………..18

Заключение……………………………………………………………………...25

Список использованных источников……………………………………..…...26

ВВЕДЕНИЕ

Данная курсовая работа посвящена спектральной теории операторов. В отдельной главе более подробно рассматривается спектральная теория компактных операторов. Важнейшими задачами этой теории являются утверждения о приведении изучаемых операторов к так называемому диагональному виду – спектральные теоремы, утверждения о свойствах спектра и собственных значениях.

Цель данной курсовой работы – познакомить тех, кто интересуется математикой со спектральной теорией операторов, в частности, со спектральной теорией для компактных операторов.

Данная курсовая работа состоит из трёх глав:

1) Линейный оператор;

2) Спектральная теория операторов;

3) Спектральная теория компактных операторов.

В первой главе рассматривается понятия линейного оператора, линейные преобразования, сопряжённый и самосопряжённыйоператор.

Во второй главе рассматривается понятие спектра оператора, теорема для замкнутого линейного оператора, спектральный радиус,понятие об ограниченном операторе и компактных операторах, а также теорема, являющаяся важным характеристическим свойством компактных операторов.

В третьей главе рассматриваются множество значений компактного оператора, собственные значения компактного оператора. В каждой главе приводятся решённые примеры.

1 Линейный оператор

1.1 Понятие линейного оператора

Функцию, множество значений которой принадлежит полю скаляров, называют функционалом.

Вообще функция может быть определена не на всем гиль­бертовом пространстве, а лишь на некотором его подмножестве. Это подмножество называют областью определения функции. Множеством значений функции называют множество, в которое эта функция отображает свою область определения. Для удобства условимся обозна­чать область определения через D, гильбертово пространство ее содержащее, — через Н1 множество значений — через R а со­держащее его пространство — через Н2 .

Определение 1.1 Оператор (преобразование) L назы­вается линейным, если его область определения D является ли­нейным подпространством (плотным или нет) и он линеен на D

L(x + y)=Lx + Ly (1.1). [9]

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 208
Бесплатно скачать Реферат: Спектральная теория операторов