Реферат: Сравнения высших степеней

β≠αi (modp) (i = 1, 2, … , n);

покладаючи тепер в тотожній конгруенції (4) х=β, знайдемо, що

a0 (β – α1 )(β – α2 ) … (β - αn ) ≡ 0 (mod p), (4′)

але різниці β — αi за умовою не діляться на р, тобто взаємно прості з р, а в такому разі і їх добуток буде взаємно простим з р. Звідси випливає, що має місце конгруенція (4'), тобто f(β) ≡ 0 (modp), тому а0 має ділитись на р, що суперечить умові, бо в нас a0 ≠ 0 (modp).

Слід зауважити, по-перше, що ця теорема не підтверджує, взагалі, наявності розв'язків конгруенції n-го степеня за простим модулем р і, по-друге, для складених модулів вона зовсім несправедлива; наприклад, конгруенція першого степеня 16 x ≡32 (mod 48), де (16, 48) = 16 і 32 ділиться на 16, має шістнадцять розв'язків.

Висновок. Конгруенція

f(х)= а0 хп + а1 хп-1 + . . . + аn-1 x + an ≡ 0 (modp)

має більш як п- розв'язків тоді і тільки тоді, коли вона тотожна, тобто коли всі її коефіцієнти діляться на р.

Справді, якщо коефіцієнти даної конгруенції діляться на р, то вона задовольняється будь-яким значенням х, тобто вона, тотожна, і число її розв'язків (яке дорівнює р) буде більш як п (бо ми скрізь передбачаємо степінь конгруенції не більший за р — 1).

Якщо а0 не ділиться на р, то це конгруенція п-го степеня і за теоремою 5 вона має не більш як п розв'язків. Якщо ж а0 ділиться на р, але a1 не ділиться на р, то степінь цієї конгруенції дорівнюватиме n — 1 і вона за тією самою теоремою має не більше п — 1, а тому й не більш як п, розв'язків. Так можна продовжувати далі, і якщо тільки не всі коефіцієнти даної конгруенції діляться на р, то число її розв'язків, очевидно, не може перевищувати п.

2.3. Системи конгруенцій

Обмежимося системою конгруенцій:

a1 x ≡b1 (mod m1 ); (a1 , m1 ) = 1,

a2 x ≡b2 (mod m2 ); (a2 , m2 ) = 1,

………………………… (1)

ak x ≡bk (mod mk ); (ak , mk ) = 1,

з одним невідомим, але різними модулями.

Розв'язати яку-небудь систему конгруенцій з одним невідомим— це означає знайти такі цілі значення невідомого х, які задовольняли б усі конгруенції даної системи. Якщо х ≡ α за деяким модулем є розв'язком системи (1), то весь цей клас чисел прийматимемо за один розв'язок. Якщо дана система має хоч би один розв'язок, то вона називається сумісною.

Насамперед, зауважимо, що розв'язуючи окремо кожну з конгруенцій (1), врешті матимемо систему, еквівалентну даній:

x ≡ c1 (mod m1 ),

x ≡ c2 (mod m2 ),

……………. (2)

x ≡ ck (mod mk ).

Отже, досить уміти розв'язувати систему конгруенцій (2).

Неважко показати, що коли система (2) сумісна, то вона має єдиний розв'язок за модулем М, що дорівнює найменшому спільному кратному чисел m1 , m2 ,… ,mk .

2.4. Зведення конгруенцій за складеним модулем до системи конгруенцій за простими модулями

Теорема 1. Якщо m1 , m2 , … , тk — попарно взаємно прості числа, то конгруенція

f(х)= а0 хп + а1 хп-1 + . . . + аn-1 x + an ≡ 0 (modm1 m2 . . . mk ) (1) еквівалентна системі конгруенцій:

f(x) ≡ 0 (mod m1 ),

К-во Просмотров: 1331
Бесплатно скачать Реферат: Сравнения высших степеней