Реферат: Структура графа состояний клеточных автоматов определённого типа
Оглавление
§1 Введение
§1.1 Общие сведенья по клеточным автоматам
§2 Структура графа состояний для линейного оператора над Zp
§3 ACS-автомат
§3.1 Постановка задачи.
§3.2 Краткий обзор предыдущих результатов
§3.3 Структура Gj при p=2
§3.3.1 Исследование структуры
§3.3.2 Исследование высоты деревьев
§3.4 Структура Gj при p¹2
§4 Структура графа состояний оператора взятия разностей
§5 Перспективы исследования
§6 Резюме
Используемые источники. Список использованной литературы
§1 Введение
§1.1 Общие сведенья по клеточным автоматам
Клеточный автомат – это математический объект с дискретным пространством и временем. Каждое положение в пространстве представлено отдельной клеткой, а каждый момент времени – дискретным шагом или поколением. Состояние каждой клетки определяется некоторыми правилами взаимодействия. Эти правила предписывают изменения состояния каждой клетки в следующем такте времени в ответ на текущее состояние соседних клеток.
Общие правила построения клеточных автоматов:
1. Состояние клеток дискретно (0 или 1, но могут быть автоматы и с большим числом состояний).
2. Соседями является ограниченное число клеток.
3. Правила, задающие динамику развития клеточного автомата, имеют некоторую функциональную форму.
4. Клеточный автомат является тактируемой системой, т.е. смена клеток происходит одновременно.
Условные обозначения
V(G) | Множество вершин графа G |
E(G) | Множество ребер графа G |
Поддерево g с корнем v | |
Множество вершин полного корневого поддерева g с корнем v дерева G, находящихся на m-том ярусе, относительно корня v. | |
D() | Множество висячих вершин графа |
Поле вычетов по modp (p – простое), т.е. {1,2,..,p-1} | |
Некоторые стандартные обозначения векторов из
(0,0,0,…,0)= | en | (1,0,1,1,0,1,…,0,1)= | rn для n=2k+1 |
(1,0,0,…,0)= | dn | (1,1,0,1,1,0,…,1,1)= | sn для n=3k+2 |
Цели:
1. Исследовать структуру графа :
· определить количество и высоту деревьев, описать их структуру;
· определить количество и длину циклов графа ;
· описать множество висячих вершин графа .
2. Рассмотреть те же вопросы для случая произвольного линейного оператора.
§2 Структура графа состояний для линейного оператора над Zp
--> ЧИТАТЬ ПОЛНОСТЬЮ <--