Реферат: Структура графа состояний клеточных автоматов определённого типа
Доказательство:
|
Теорема 3.3.1.4
Все деревья (в том числе и примыкающие к каждой вершине произвольного цикла) будут иметь столько ярусов, сколько и «нулевое», причем будут иметь такую же структуру.
Более точно: дерево, притягиваемое каждой точкой каждого цикла графа состояний, изоморфно дереву, притягиваемому точкой en .
Доказательство:
Предположим «нулевое» дерево состоит из n ярусов тогда:
1. Если наше дерево состоит менее чем из n ярусов, то, пользуясь теоремой 3.3.1.2, мы восстанавливаем его до дерева изоморфного «нулевому».
2. Если дерево имеет m ярусов, где n<m тогда , получается, что «нулевое» дерево состоит из m ярусов Ї противоречие.
§3.3.2 Исследование высоты деревьев
Теорема 3.3.2.1
Если длина последовательности равна 2k -1, то высота деревьев будет равна 2k -1.
Доказательство:
Пример для k=1 и k=2 строятся довольно просто:
k=1 k=2
0 (1) 0 0 (1,0,0) 0
0 (0) 0 0 (0,1,0) 0
0 (1,0,1) 0
0 (0,0,0) 0
Докажем по индукции
1. База индукции:
Пусть k=3,тогда:
0 (1,0,0,0,0,0,0) 0
0 (0,1,0,0,0,0,0) 0
0 (1,0,1,0,0,0,0) 0
0 (0,0,0,1,0,0,0) 0
0 (0,0,1,0,1,0,0) 0
0 (0,1,0,0,0,1,0) 0
0 (1,0,1,0,1,0,1) 0
0 (0,0,0,0,0,0,0) 0