Реферат: Световод: уравнение, типы волн в световодах. Критические длины и частоты
(4)
где (без учета затухания) – поперечное волновое число сердечника; k1 – волновое число сердечника с коэффициентом преломления n1 , .
Решение уравнений (4) для сердечника следует выразить через цилиндрические функции первого рода – функции Бесселя, имеющие конечные значения при r=0. Поэтому можно написать
(5)
где Аn и Вn – постоянные интегрирования.
Воспользовавшись уравнениями (2), рассмотрим связь между поперечными и продольными компонентами поля. В частности, для составляющей Еr имеем
Возьмем производную от второго выражения по
Учитывая, что , а , то
Тогда
или
Подставим данное выражение в уравнение для Еr
или
.
Окончательно получим .
Аналогично можно установить связь между продольными и другими поперечными компонентами поля
Воспользовавшись уравнениями (5) возьмем соответствующие производные
Тогда выражения для поперечных составляющих электрического и магнитного полей в сердечнике световода, полагая, что , имеют вид (множитель не пишем):
(6)
Для оболочки имеем аналогичную систему уравнений:
где (без учета затухания) – поперечное волновое число оболочки световода; k2 – волновое число оболочки с коэффициентом преломления n2 , .
Для решения данных уравнений, исходя из условия, что при поле должно стремиться к нулю, следует использовать цилиндрические функции третьего рода – функции Ганкеля:
где Сn , Dn – постоянные интегрирования.
Тогда для поперечных составляющих поля в оболочке можно написать следующие выражения: