Реферат: Световод: уравнение, типы волн в световодах. Критические длины и частоты

Данные выражения позволяют определять структуру поля, параметры волн и характеристики волоконного световода при различных типах волн и частотах.

Каждый тип волны (мода) имеют свою критическую частоту и длину волны. Наличие критической частоты в волоконных световодах объясняется тем, что при очень высоких частотах почти вся энергия концентрируется внутри сердечника световода, а с уменьшением частоты происходит перераспределение поля и энергия переходит в окружающее пространство. При определенной частоте fo – критической, или частоте отсечки, поле больше не распространяется вдоль световода и вся энергия рассиевается в окружающим пространстве.

Ранее были приведены следующие соотношения:

где - коэффициент фазы в световоде;

k1 и k2 – волновое число соответственно сердечника

и оболочки световода:

g1 и g2 – поперечное волновое число соответственно

для сердечника и оболочки.

а – радиус сердечника волокна.

Учитывая, что


получим .

Полагая, что r=a, произведем сложение левых и правых частей приведенных выражений

Для определения критической частоты fo надо принять g2 =0. При всех значениях g2 >0 поле концентрируется в сердечнике световода, а при g2 =0 оно выходит из сердечника и процесс распространения по световоду прекращается. По закону геометрической оптики условие g2 =0 соответствует углу полного внутреннего отражения, при котором отсутствует преломленная волна, а есть толь падающая и отраженная волны. Тогда при g2 =0 имеем

Подставив в эту формулу значение , получим , откуда критическая частота световода . (11)

Умножив числитель и знаменатель на параметр а (радиус сердечника), получим значение критической частоты

(12)


и критической длины волны

, (13)

где g1 a – корни бесселевых функций.

Так как световоды изготавливаются из немагнитных материалов (), то

.

Принципиально аналогичный результат можно получить лучевым методом непосредственно из законов геометрической оптики путем сопоставления падающей, отраженной и преломленной волн на границе сердечник-оболочка световода.

Анализируя полученные соотношения, можно сказать, что чем толще сердечник световода и чем больше отличаются , тем больше критическая длина волны и соответственно ниже критическая частота волоконного световода. Из формул видно также, что при равенстве оптических характеристик, в первую очередь диэлектрической проницаемости сердечника и оболочки, т.е. при , критическая длина волны , а критическая частота и передача по такому световоду невозможна. Это имеет свое логическое обоснование: как уже сказано, волоконный световод работает на принципе многократного отражения от границы оптических несоответствий сердечника и оболочки, и эта граница является направляющей средой распространения электромагнитной энергии. При световод перестает действовать как направляющая система передачи.

Для определения критических частот различных типов волн рассмотрим корни ранее полученного выражения бесселевых функций J0m (g1 a) для симметричных и Jnm (g1 a) для несимметричных волн. Эти равенства дают бесконечное число корней, значения которых приведены в табл. 1.

Таблица 1

n Значение корня (g1 a) при m, равном Тип волны

0

К-во Просмотров: 332
Бесплатно скачать Реферат: Световод: уравнение, типы волн в световодах. Критические длины и частоты