Реферат: Теоретическая механика
Rx = åFkx (1.6)
С учетом (1.6) равнодействующая определяется выражением
, (1.7)
Направление вектора равнодействующей определяется косинусами углов между вектором и осями x , y, z (рис.1.20)
где
1.7.2. Преобразование произвольной системы сил .
Применить правило параллелограмма сил непосредственно к произвольной системе сил нельзя, так как линии действия сил не пересекаются в одной точке. Предварительно систему сил приводят к одному центру на основании теоремы о параллельном переносе силы.
Теорема: силу, приложенную к твердому телу, можно, не изменяя оказываемого ею действия, перенести параллельно в другую точку тела, прибавляя при этом пару сил с моментом, равным моменту переносимой силы относительно точки, в которую она переносится (рис.1.22).
В результате указанного преобразования получается сходящаяся система сил и сумма моментов пар сил. Действие сходящейся системы сил заменяют действием суммарной силы, действие моментов - суммарным моментом. Суммарный вектор * называют главным вектором системы сил, суммарный момент * - главным моментом системы сил.
Рис.1.22
Вывод: произвольная система сил в результате тождественного преобразования приводится к главному вектору * и главному моменту * системы сил.
Аналитически главный вектор и главный момент системы сил могут быть определены через их проекции на оси координат
, ( 1.8 )
. (1.9)
1.8 Условия равновесия систем сил
1.8.1. Равновесие системы сходящихся сил
По определению (см.п.1.1) действие системы сходящихся сил эквивалентно действию одной равнодействующей силы . Для равновесия тела необходимо и достаточно, чтобы равнодействующая равнялась нулю = 0.
Из формулы (1.7) следует, что для равновесия пространственной системы сходящихся сил необходимо и достаточно, чтобы сумма проекций всех сил на оси X,Y,Zравнялась нулю
åFkx = 0
åFky = 0 ( 1.10) åFk z = 0
Для равновесия плоской сходящейся системы сил необходимо и достаточно, чтобы сумма проекций всех сил на оси X,Yравнялась нулю
åFkx = 0
åFky = 0 ( 1.11 )
1.8.2. Равновесие произвольной системы сил.
Действие произвольной системы сил эквивалентно действию главного вектора и главного момента. Для равновесия необходимо и достаточно выполнения условия
* = 0 (1.12 )
* = 0
Для равновесия произвольной системы сил необходимо и достаточно, чтобы суммы проекций всех сил на оси X,Y,Z и суммы моментов всех сил относительно осей X,Y,Z равнялись нулю.