Реферат: Теоретическая механика

Rx = åFkx (1.6)

С учетом (1.6) равнодействующая определяется выражением

, (1.7)

Направление вектора равнодействующей определяется косинусами углов между вектором и осями x , y, z (рис.1.20)

где

1.7.2. Преобразование произвольной системы сил .

Применить правило параллелограмма сил непосредственно к произвольной системе сил нельзя, так как линии действия сил не пересекаются в одной точке. Предварительно систему сил приводят к одному центру на основании теоремы о параллельном переносе силы.

Теорема: силу, приложенную к твердому телу, можно, не изменяя оказываемого ею действия, перенести параллельно в другую точку тела, прибавляя при этом пару сил с моментом, равным моменту переносимой силы относительно точки, в которую она переносится (рис.1.22).

В результате указанного преобразования получается сходящаяся система сил и сумма моментов пар сил. Действие сходящейся системы сил заменяют действием суммарной силы, действие моментов - суммарным моментом. Суммарный вектор * называют главным вектором системы сил, суммарный момент * - главным моментом системы сил.

Рис.1.22

Вывод: произвольная система сил в результате тождественного преобразования приводится к главному вектору * и главному моменту * системы сил.

Аналитически главный вектор и главный момент системы сил могут быть определены через их проекции на оси координат

, ( 1.8 )

. (1.9)

1.8 Условия равновесия систем сил

1.8.1. Равновесие системы сходящихся сил

По определению (см.п.1.1) действие системы сходящихся сил эквивалентно действию одной равнодействующей силы . Для равновесия тела необходимо и достаточно, чтобы равнодействующая равнялась нулю = 0.

Из формулы (1.7) следует, что для равновесия пространственной системы сходящихся сил необходимо и достаточно, чтобы сумма проекций всех сил на оси X,Y,Zравнялась нулю

åFkx = 0

åFky = 0 ( 1.10) åFk z = 0

Для равновесия плоской сходящейся системы сил необходимо и достаточно, чтобы сумма проекций всех сил на оси X,Yравнялась нулю

åFkx = 0

åFky = 0 ( 1.11 )

1.8.2. Равновесие произвольной системы сил.

Действие произвольной системы сил эквивалентно действию главного вектора и главного момента. Для равновесия необходимо и достаточно выполнения условия

* = 0 (1.12 )

* = 0

Для равновесия произвольной системы сил необходимо и достаточно, чтобы суммы проекций всех сил на оси X,Y,Z и суммы моментов всех сил относительно осей X,Y,Z равнялись нулю.


К-во Просмотров: 1559
Бесплатно скачать Реферат: Теоретическая механика