Реферат: Теоретическая механика

(2.2)

Модуль полной скорости точки при прямоугольной системе координат будет равен


(2.3)

Направление вектора скорости определяется косинусами направляющих углов

где - углы между вектором скорости и осями координат.

Определение скорости точки в естественной системе отсчета

Скорость точки в естественной системе отсчета определяется как производная от закона движения точки

V = (2.4)

Согласно предыдущим выводам вектор скорости направлен по касательной к траектории в сторону движения точки и в осях nb определяется только одной проекцией .

Ускорение точки

По определению ускорение характеризует изменение скорости, т.е. скорость изменения скорости.

Ускорения точки в векторной системе отсчета

На основании свойства производной

, (2.5 )

Вектор скорости может изменяться по модулю и направлению. Для определения приращения вектора совместим начала векторов (рис.2.6). Вектор ускорения направлен по линии приращения вектора скорости, т. е. В сторону искривления траектории.


Рис.2.6

Ускорение точки в координатной системе отсчета

Ускорение изменения координат точки равно производной по времени от скоростей изменения этих координат

ax =; ay =; az = .

Полное ускорение в прямоугольной системе координат будет определяться выражением

а = , (2.6)

Направляющие косинусы вектора ускорения

.

Ускорение точки в естественной системе отсчета

Приращение вектора скорости (рис.2.7) можно разложить на составляющие, параллельные осям естественной системы координат

, (2.7)

Разделив левую и правую части равенства (2.7 ) на dt , получим,

К-во Просмотров: 1556
Бесплатно скачать Реферат: Теоретическая механика