Реферат: Теоретическая механика
Положение точки в системе координат OXYZ задается тремя координатами X,Y,Z (рис.2.2). Закон движения – x = x ( t ), y = y ( t ), z = z ( t ).
Положение точки в естественной системе отсчета задается расстоянием S от начала отсчета до этой точки вдоль траектории (рис.2.3). Закон движения – s = s ( t ).
Рис.2.1 Рис. 2.2 Рис.2.3
Движение точки при естественном способе задания движения определено если известны:
1.Траектория движения.
2.Начало и направление отсчета дуговой координаты.
3.Уравнение движения.
При естественном способе задания движения, в отличии от других способов, используются подвижные координатные оси, движущиеся вместе с точкой по траектории. Такими осями являются (рис. 2.4).
Касательная () – направлена в сторону возрастания дуговой координаты по касательной к траектории.
Главная нормаль (п ) – направлена в сторону вогнутости кривой.
Бинормаль (в ) – направлена перпендикулярно к осям t , n.
Рис. 2.4
2.2.2 Определение кинематических характеристик точки
Траектория точки
В векторной системе отсчета траектория описывается выражением
В координатной системе отсчета траектория определяется по закону движения точки и описывается выражениями z = f ( x , y ) - в пространстве, или y = f(x ) – в плоскости.
В естественной системе отсчета траектория задается заранее.
Скорость точки
Согласно определению (см. п. 2.1) скорость характеризует изменение во времени положения точки (тела) в пространстве.
Определение скорости точки в векторной системе координат
При задании движения точки в векторной системе координат отношение перемещения к интервалу времени называют средним значением скорости на этом интервале времени .
Принимая интервал времени бесконечно малой величиной, получают значение скорости в данный момент времени (мгновенное значение скорости)
(2.1)
Вектор средней скорости направлен вдоль вектора в сторону движения точки, вектор мгновенной скорости направлен по касательной к траектории в сторону движения точки (рис.2.5).
Рис.2.5
Вывод: скорость точки – векторная величина, равная производной от закона движения по времени.
Отметим и используем в дальнейших рассуждениях следующее свойство производной: производная от какой либо величины по времени определяет скорость изменения этой величины.
Определение скорости точки в координатной системе отсчета