Реферат: Теория устойчивости

j V’ j V’


0 U’ 0 U’


а) б)

???.13. Примеры годографов Михайлова для различных характеристических уравнений замкнутых систем:

а - устойчивые системы при n = 1 - 6 ; б - неустойчивые системы при n = 4 и различных параметрах


Соответствующие устойчивым системам годографы Михайлова для уравнений различных порядков построены на рис. 13,а. На рис. 13,б построены годографы Михайлова для неустойчивых систем при n = 4.


Введение


Одной из основных задач теории автоматического регулирования является изучение динамических процессов, происходящих в автоматических системах. Автоматические системы при нормальной эксплуатации должны поддерживать определенный режим работы объекта регулирования при действии на него многих возмущающих факторов. Такое поведение может быть достигнуто лишь в системах автоматического регулирования, обладающих устойчивостью по отношению к этим воздействиям. Устойчивость системы означает, что малое изменение входного сигнала или какого-нибудь возмущения, начальных условий или параметров не приведут к значительным отконениям выходного сигнала. Это определение раскрывает физический смысл понятия устойчивости.

Теория устойчивости, основоположниками которой являются великий русский ученый А.М. Ляпунов и великий французский ученый А.Пуанкаре, представляет собой важный раздел прикладной математики. Создателями современной теории устойчивости являются русские ученые Н.Г. Четаев, Е.А. Барбашин, Н.П. Еругин, Н.Н. Красовский.


1. Понятие устойчивости, асимптотической устойчивости и неустойчивости по Ляпунову.

Рассмотрим задачу Коши для нормальной системы дифференциальных уравнений


x’ = f ( t , x )


(1)


с начальными условиями x ( t0 ) = x0 (2)

где x = ( x1, x2, ... , xn ) - n - мерный вектор; t О I = [t0, + Ґ [ - независимая переменная, по которой производится дифференцирование;


f ( t, x ) = ( f1 ( t , x ) , f2 ( t , x ) , ... , fn ( t , x ) ) - n - мерная вектор - функция.

Комментарии к задаче Коши (1), (2). Для простоты восприятия эту задачу можно сначала трактовать как задачу Коши для скалярного дифференциального уравнения первого порядка вида x’= f ( t , x ) с начальным условием x ( t0 ) = x0. С целью упрощения все рисунки п. 10 ,если нет специальных оговорок, приводится для случая n = 1.

x


0 t

Рис.1

??? ??? ?????? ?????? ???????????? ??????? ???????? ? ????????, ?? ?????????? t ??????? ???????????????? ??? ?????, ? ??????? ??????-??????? x ( t ) - ??? ???????? ????? ? ??????????? ?? ??????? ? ???????????? Rn+1 (???.1)

Пусть задача Коши (1), (2) удовлетворяет условиям теоремы существования и единственности. Тогда через каждую точку ( t0 , x0 ) области единственности решений проходит только одна интегральная кривая. Если начальные данные ( t0 , x0 ) изменяются, то изменяется и решение. Тот факт, что решение зависит от начальных данных, обозначается следующим образом: x ( t ) = x ( t ; t0 , x0 ). Изменение этого решения в данной математической модели с изменением начальных данных ( t0 , x0 ) приводят к существенному изменению решения x ( t ; t0 , x0 ) , приводит к тому, что такой моделью нельзя пользоваться, поскольку начальные данные ( t0 , x0 ) получаются из опыта, а изменения не могут быть абсолютно точными. Естественно, что в качестве математической модели пригодна лишь та задача Коши, которая устойчива к малым изменениям начальных данных.

К-во Просмотров: 365
Бесплатно скачать Реферат: Теория устойчивости