Реферат: Теория устойчивости

о dy / dt = Q ( x , y ).


Точка ( x0 , y0 ) называется точкой покоя или особой точкой системы (A), если P ( x0 , y0 ) = 0 , Q ( x0 , y0 ) = 0.

Рассмотрим систему

ж dx / dt = a11 x + a12 y,

н (7)

о dy / dt = a21 x + a22 y.


где aij ( i , j = 1 , 2 ) - постоянные. Точка ( 0 , 0 ) является точкой покоя системы (7). Исследуем расположение траектории системы (7) в окрестности этой точки. Ищем решение в виде

x = a 1 e k t , y = a 2 e k t . (8)

Для определения k получаем характеристическое уравнение

a11 - k a12

= 0. (9)

a21 a22 - k


Рассмотрим возможные случаи.

I. Корни характеристического уравнения действительны и различны. Подслучаи :

1) k1 < 0, k2 < 0. Точка покоя асимптотически устойчива (устойчивый узел).

2) k1 > 0, k2 > 0. Точка покоя неустойчива (неустойчивый узел).

3) k1 > 0, k2 < 0. Точка покоя неустойчива (седло).

4) k1 = 0, k2 > 0. Точка покоя неустойчива.

5) k1 = 0, k2 < 0. Точка покоя устойчива, но не асимптотически.

II. Корни характеристического уравнения комплексные : k1 = p + q i, k2 = p - q i. Подслучаи :

1) p < 0 , q 0. Точка покоя асимптотически устойчива (устойчивый фокус).

2) p > 0 , q 0. Точка покоя неустойчива (неустойчивый фокус).

3) p = 0, q 0. Точка покоя устойчива (центр). Асимптотической устойчивости нет.

III. Корни кратные: k1 = k2 . Подслучаи :

1) k1 = k2 < 0. Точка покоя асимптотически устойчива (устойчивый узел).

2) k1 = k2 > 0. Точка покоя неустойчива (неустойчивый узел).

3) k1 = k2 = 0. Точка покоя неустойчива. Возможен исключительный случай, когда все точки плоскости являются устойчивыми точками покоя.

Для системы линейных однородных уравнений с постоянными коэффициентами

dxi n

К-во Просмотров: 362
Бесплатно скачать Реферат: Теория устойчивости