Реферат: Теория устойчивости
о dy / dt = Q ( x , y ).
Точка ( x0 , y0 ) называется точкой покоя или особой точкой системы (A), если P ( x0 , y0 ) = 0 , Q ( x0 , y0 ) = 0.
Рассмотрим систему
ж dx / dt = a11 x + a12 y,
н (7)
о dy / dt = a21 x + a22 y.
где aij ( i , j = 1 , 2 ) - постоянные. Точка ( 0 , 0 ) является точкой покоя системы (7). Исследуем расположение траектории системы (7) в окрестности этой точки. Ищем решение в виде
x = a 1 e k t , y = a 2 e k t . (8)
Для определения k получаем характеристическое уравнение
a11 - k a12
= 0. (9)
a21 a22 - k
Рассмотрим возможные случаи.
I. Корни характеристического уравнения действительны и различны. Подслучаи :
1) k1 < 0, k2 < 0. Точка покоя асимптотически устойчива (устойчивый узел).
2) k1 > 0, k2 > 0. Точка покоя неустойчива (неустойчивый узел).
3) k1 > 0, k2 < 0. Точка покоя неустойчива (седло).
4) k1 = 0, k2 > 0. Точка покоя неустойчива.
5) k1 = 0, k2 < 0. Точка покоя устойчива, но не асимптотически.
II. Корни характеристического уравнения комплексные : k1 = p + q i, k2 = p - q i. Подслучаи :
1) p < 0 , q № 0. Точка покоя асимптотически устойчива (устойчивый фокус).
2) p > 0 , q № 0. Точка покоя неустойчива (неустойчивый фокус).
3) p = 0, q № 0. Точка покоя устойчива (центр). Асимптотической устойчивости нет.
III. Корни кратные: k1 = k2 . Подслучаи :
1) k1 = k2 < 0. Точка покоя асимптотически устойчива (устойчивый узел).
2) k1 = k2 > 0. Точка покоя неустойчива (неустойчивый узел).
3) k1 = k2 = 0. Точка покоя неустойчива. Возможен исключительный случай, когда все точки плоскости являются устойчивыми точками покоя.
Для системы линейных однородных уравнений с постоянными коэффициентами
dxi n