Реферат: Теория устойчивости

x1

а) Рис.8 б)


Определение 5. ????? ( a1, a2 , ... , an ) ?????????? ?????? ????? (?????????? ??????????) ?????????? ??????? (5), ???? ?????? ????? f1 , f2 , ... , fn ??????? (5) ?????????? ? ???? ????? ? ????, ?.?. f (a) = 0, ??? a = ( a1 , a2 , ... , an ) , 0 = ( 0 , 0 , ... , 0 ) .

Если ( a1 , ... , an ) - точка покоя, то система (5) имеет постоянное решение x ( t ) = a. Как известно, исследование устойчивости любого, а значит, и постоянного решения a можно свести к исследованию устойчивости нулевого решения. Поэтому далее будем считать, что система (5) имеет нулевое решение x ( t ) є 0 , т.е. f ( 0 ) = 0, и точка покоя совпадает с началом координат фазового пространства Rn. В пространстве Rn+1 точке покоя соответствует нулевое решение. Это изображено на рис.8 для случая n = 2.

Таким образом, устойчивость нулевого решения системы (5) означает устойчивость начала координат фазового пространства системы (5), и наоборот.

Дадим геометрическую интерпретацию устойчивого, асимптотически устойчивого и неустойчивого начала плоскости, т.е. когда n = 2. Для этого следует спроектировать аналоги рис.5-7 в двумерном случае на фазовую плоскость R2, причем проекциями e - трубки и d - трубки являются окружности с радиусами e и d . Начало x = 0 устойчиво, если все траектории, начинающиеся в пределах d - окружности, не покидают e - окружность " t і t0 (рис.9) ; асимптотически устойчиво, если оно устойчиво и все траектории, начинающиеся в области притяжения D , стремятся к началу (рис.10) ; неустойчиво, если для любой e - окружности и всех d > 0 существует хотя бы одна траектория, покидающая ее (рис.11).

Нормальная система линейных дифференциальных уравнений с постоянными коэффициентами, имеющая вид

dx / dt = A x, (6)

где A - постоянная матрица размера n ґ n , является частным случаем системы (5). Следовательно, для этой системы справедливы все сделанные выше утверждения об автономных системах.

x2




0 x1


Рис.9

x2




0 x1


Рис.10


x2




0 x1


Рис.11



3. Простейшие типы точек покоя.

Пусть имеем систему дифференциальных уравнений

ж dx / dt = P ( x , y ),

К-во Просмотров: 364
Бесплатно скачать Реферат: Теория устойчивости