Реферат: Теория устойчивости

dt i=1


характеристическим уравнением будет

a11 - k a12 a13 ... a1n

a21 a22 - k a23 ... a2n = 0. (11)

. . . . . . . .

an1 an2 an3 ... ann - k


1) Если действительные части всех корней характеристического уравнения (11) системы (10) отрицательны, то точка покоя xi ( t ) є 0 ( i = 1 , 2 , ... , n ) асимптотически устойчива.

2) Если действительная часть хотя бы одного корня характеристического уравнения (11) положительна, Re k i = p i > 0, то точка покоя xi ( t ) є 0 ( i = 1, 2, ... n ) системы (10) неустойчива.

3) Если характеристическое уравнение (11) имеет простые корни с нулевой действительной частью (т.е. нулевые или чисто мнимые корни ), то точка покоя xi ( t ) є 0 ( i = 1, 2, ... n ) системы (10) устойчива, но не асимптотически.

Для системы двух линейных линейных уравнений с постоянными действительными коэфициентами

.

ж x = a11 x + a12 y,

н . (12)

о y = a21 x + a22 y


характеристическое уравнение (9) приводится к виду

k2 + a1 k + a2 = 0.

1) Если a1 > 0 , a2 > 0, то нулевое решение системы (12) асимптотически устойчиво.

2) Если а1 > 0 , a2 = 0, или a1 = 0 , a2 > 0 , то нулевое решение устойчиво, но не асимптотически.

3) Во всех остальных случаях нулевое решение неустойчиво; однако при a1 = a2 = 0 возможен исключительный случай, когда нулевое решение устойчиво, но не асимптотически.


Список литературы:


1. Краснов М. Л., Киселев А. И., Макаренко Г. И. Функции комплексного переменного. Операционное исчисление. Теория устойчивости. М.: Наука , 1981.

2. Шестаков А. А., Малышева И. А., Полозков Д. П. Курс высшей математики. М.: ВШ , 1987.

3. Иващенко Н. Н. Автоматическое регулирование. М.: ВШ , 1973.

4. Абрамович И. Г., Лунц Г. Л., Эльсгольц Л. Э. Функции комплексого переменного. Операционное исчисление. Теория устойчивости. М.: Наука , 1968.

5. Чемоданов Б.К. Математические основы теории автоматического регулирования. М.: ВШ ,1977.

К-во Просмотров: 360
Бесплатно скачать Реферат: Теория устойчивости