Реферат: Теория устойчивости
Если кроме того,
$ D > 0 " x0 | D x0 | Ј D Ю | x ( t ; t0 , x0 ) | ® 0 , t ® + Ґ ,
то решение x ( t ) є 0 системы (1) называется асимптотически устойчивым в положительном направлении ( или асимптотически устойчивым ) .
Определение 4. Нулевое решение x ( t ) є 0 системы (1) называется неустойчивым по Ляпунову в положительном направлении (или неустойчиво), если оно не является устойчивым в положительном направлении, т.е.
$ e > 0 $ t1 > t0 " d > 0 x0 № 0 | x0 | Ј d Ю | x ( t ; t0 , x0 ) | > e .
Геометрическая интерпритация устойчивости, асимптотической устойчивости и неустойчивости нулевого решения x ( t ) є 0 системы (1) дана соответственно на рис.5-7.
x
t
0
Рис.5
x
t
0
Рис.6
x
t
0
Рис.7
2. Устойчивость решения автономной системы. Устойчивость решения системы линейных дифференциальных уравнений с постоянными коэффициентами.
Система обыкновенных дифференциальных уравнений называется автономной (или стационарной, или консервативной, или динамической), если независимая переменная не входит явно в систему уравнений.
Нормальную автономную систему n - го порядка можно записать в векторной форме :
dx / dt = f ( x ). (5)
Рассмотрим задачу Коши для системы (5) с начальными условиями (2). В дальнейшем предполагаем, что задача Коши (5), (2) удовлетворяет условиям теоремы существования и единственности.
Пусть x = x ( t ) - есть решение системы (5). Направленная кривая g , которую можно параметрически задать в виде xi = xi ( t ) ( i = 1, ... , n ), называется траекторией (фазовым графиком) системы (5) или траекторией решения x = x ( t ). Пространство Rn с координатами ( x1 , ... , xn ), в котором расположены траектории системы (5), называется фазовым пространством автономной системы (5). Известно, что интегральные кривые системы (5) можно параметрически задать в виде t = t , x1 = x1 ( t ), ... , xn = xn ( t ). Следовательно, интегральная кривая принадлежит пространству Rn+1 с координатами ( t , x1 , x2 , ... , xn ) , а траектория является проекцией интегральной кривой на пространство Rn параллельно оси t. Проиллюстрируем это для случая n = 2 , т.е. когда Rn+1 - трехмерное пространство, а фазовое пространство Rn - двумерная плоскость. На рис.8,а изображена интегральная кривая, заданная параметрическими уравнениями t = t, x1 = x1 ( t ) , x2 = x2 ( t ), на рис.8,б - ее проекция на плоскость, т.е. траектория, заданная параметрическими уравнениями x1 = x1 ( t ) , x2 = x2 ( t ). Стрелкой указано направление возрастания параметра t.
x2 x2