Реферат: Теория вероятности и мат статистика

j1=1, ..., m1; j2=1, ..., m2; jn=1, ..., mn;

Общая структура независимых событий в композиционном пространстве имеет вид:

1-е событие - это событие, которое происходит в 1-м вероятностном пространстве
2-е событие - это событие, которое происходит во 2-м вероятностном пространстве
n - событие - это событие, которое происходит в n-м вероятностном пространстве

Рассмотрим два вероятностных пространства.

I II

Очевидно, что неопределенность испытания до испытания в первом вероятностном пространстве выше, чем во втором. Действительно, до испытания в I нельзя ни одному из событий отдать предпочтения, а во II событие E3 происходит чаще.


Энтропия - мера неопределенности исхода испытания (до испытания).


Первым, кто функционально задал выражение для энтропии был Шеннон.


,


Для вероятностного пространства:

Энтропия задается выражением: . Если P1=0, то PiЧlogPi­=0.

Самим показать, что:

  1. Если вероятностное пространство не имеет определенности, т.е. какое-то из Pi=1, а остальные равны 0, то энтропия равна нулю.

  2. Если элементарный исход равновероятен, т.е. , то энтропия принимает максимальное значение.

0ЈPiЈ1,

  1. ,

    т.о. вероятности p1, p2, ..., ps обращаются в ноль, например pi, которая равна 1. Но log1=0. Остальные числа также обращаются в 0, т.к. .

  2. Докажем, что энтропия системы с конечным числом состояний достигае максимума, когда все состояния равновероятны. Для этого рассмотрим энтропию системы как функцию вероятностей p1, p2, ..., ps и найдем условный экстремум этой функции, при условии, что .

Пользуясь методом неопределенных множителей Лагранжа, будем искать экстремум функции: .

Дифференцируя по p1, p2, ..., ps и приравнивая производные нулю получим систему:

i=1, ..., s

Откуда видно, что экстремум достигается при равных между собой p1.

Т.к. , то p1= p2=, ..., = ps= 1/s.

Еденицей измерения энтропии является энтропия вероятностного пространства вида:

, которая называется 1 бит.

Неопределенность исхода испытания до испытания автоматически определяет информативность исхода испытания после испытания. Поэтому в битах также измеряется информативность исхода.

Рассмотрим два вероятностных пространства:

К-во Просмотров: 415
Бесплатно скачать Реферат: Теория вероятности и мат статистика