Реферат: Теория вероятности и мат статистика

В результате второго испытания события: .

Сложное событие B определяет все возможные комбинации исходов двух испытаний независимо друг от друга. В результате первого испытания произошли элементарные события: .

В результате второго испытания события: .

Тогда:

, т.к. второе испытание не влияет на результаты первого.

т.к. , (надо доказать)

то

При решении практических задач, связанных с независимыми испытаниями обычно не требуется строить композиционных пространств элементарных событий, а использовать формально неверную запись: P(AЧB)=P(A)ЧP(B).

Композиция n испытаний.

Имеется n испытаний. Зададим для i-го испытания вероятностное пространство:

i=1, ..., n

Композицией n испытаний называется сложное испытание, состоящее в совместном проведении n испытаний. Задается n испытаний, вероятностное пространство каждого из которых имеет вид:

i=1, ..., n

Композиционное пространство имеет вид:

j1=1, ..., m1; j2=1, ..., m2; jn=1, ..., mn;


Композиция n независимых испытаний.

Испытания (n - испытаний) называются независимыми, если неоднозначность исхода каждого из испытаний определена не связанными между собой группами факторов.

Событие A1: в результате проведения композиционного испытания в первом испытании произошло событие . Тогда

Событие An: в результате проведения композиционного испытания в первом испытании произошло событие . Тогда

i=1, ..., n

Рассмотрим событие:

В силу определения независимости испытаний очевидно, что:

.

Следовательно: .

На практике не строят композиционных пространств, а записывают формально неправильную формулу: P(A1A2...An)=P(A1)P(A2)...P(An).

К-во Просмотров: 408
Бесплатно скачать Реферат: Теория вероятности и мат статистика