Реферат: Теория вероятности и мат статистика
P(A1A2...Ak-1)=P(B)
P(A1A2...Ak)=P(AkB)=P(B)ЧP(AkB)
Независимые события.
Два события A и B называются независимыми, если P(A/B)=P(A); P(B)=P(B/A) - доказать.
В этом случае вероятность наступления двух событий A и B равна P(AB)=P(B)P(A/B)=P(A)P(B),
при этом покажем, что P(B/A)=P(B); P(AB)=P(B)P(A)=P(A)P(B/A)
События A1A2...Ak называются независимыми между собой, если вероятность их совместного наступления ; . Два независимых события совместны.
* Если бы события были несовместны, то P(A/B)=0 и P(B/A)=0, т.к. они независимы, то P(A/B)=P(A) и P(B/A)=P(B), т.е. утверждение “независимые события несовместны”, т.к. P(A)=0 и P(B)=0, то это утверждение неверно.
Формула сложения вероятностей.
U - достоверное событие
Покажем, что события несовместны.
* Если события несовместны, то ; ;
т.е. события несовместны.
Тогда по третей аксиоме теории вероятности
Справедливо следующее тождество на основании (1) и закона дистрибутивности
Показать самим, что все три множества попарно несовместны.
На основании первой и третей аксиомы теории вероятности получаем:
Имеет место тождество , показать самим, что несовместны
По третей аксиоме:
Для экзамена доказать самим формулу суммы произвольного числа событий
Формула полной вероятности.
Рассмотрим систему A из k попарно несовместных событий.