Реферат: Устойчивость
Из граничных условий попробуем найти произвольные постоянные
C1 и С2
1) при Z=0:
2) при Z=:
Возможны две ситуации
C1 =0, откуда y0, т. е. получаем прямолинейную равновесную форму,
Sin K (nN) подставим в (1) выражение R2 =
откуда найдем значение силы, при которой помимо прямолинейной равновесной формы появляется смежная криволинейная равновесная форма
реальный смысл имеет наименьшее значение силы при n=1 эйлерова сила – критическая сила.
Fкр=
Очевидно, что Ix – минимальный момент инерции.
Потери устойчивости будет происходить по синусоиде y = C1 Sin
однако произвольную C1 мы так и не смогли найти.
Дело в том, что задача о потере устойчивости задача существенно нелинейно, а мы поступили непоследовательно. С одной стороны мы подошли к задаче как нелинейной, отойдя от принципа начальных размеров, и определив изгибающий момент с учетом изгиба стержня. С другой стороны, приняв приближенное выражение для кривизны, мы линеаризовали задачу. Для того, чтобы определить прогибы в закритической стадии надо исходить из нелинейного дифференциального уравнения.
Однако главная цель – определение критической силы для стержня нами достигнута.
Влияние условий закрепления концов стержня на величину критической силы
Формула (2) даёт возможность определить критическую силу только в том случае шарнирного опирания обоих концов стержня. Обобщим полученный результат на некоторые другие часто встречающиеся случаи закрепления.
а). Стержень, закреплённый жёстко одним концом и свободный от закрепления на другом. Очевидно изгиб стержня в этом случае будет таким же, как и в случае шарнирно опертого стержня, но имеющего длину в 2 раза большую.
Критическая сила в этом случае будет равна критической силе шарнирно опёртого стержня, имеющего длину 2.
Введём понятие коэффициента привидения длины - , т. е. числа показывающего во сколько раз нужно увеличить длину шарнирно опёртого стержня, чтобы критическая сила для него равнялась критической силе стержня длиной при заданном закреплении.
Очевидно, что в нашем случае коэффициент можно трактовать , как число показывающее сколько раз длина стержня укладывается в длине полуволны синусоиды, по которой происходит потеря устойчивости.
Обобщим формулу Эйлера
(3)
Для некоторых других случаев закрепления коэффициент приведения длины равен:
Рис. 102