Реферат: Взаимосвязи экономических перемененых

IV ). Ошибки изм-ий , кот-ые отраж-ся на несоответ-тт модел знач-й эмпир данным (з/п в конверте).

V ). Огранич-ть стат данных.

Мы строим лин модель, являющ-ся непрерыв-й, но для ее постр-ия исп-ем огран выборку из массива ген сов-ти данных, что наклад-т огран-ия на соот-ие модели эмпир данным.

VI ). Непредказ-ть чел фак-ра .

Эта причина м испортить люб самую качест модель.

Т.о. случ слогаемые в модели отраж-т влияние мно-ва субъек-ых ф-ров. И решение задачи постр-ия модели, соот-ей эмпир данным и целям иссл-ия яв-ся слож многоступен-й процессом, кот-ый м разбить на 3 этапа:

1). Выбор формы урав-ия регр-ии.

2). Опр-ие парам-в выбранного ур-ия.

3). Анализ кач-ва постр-го ур-ия и проверка его соотв-ия (адекват-ти) эмпир данным, на основе кот-ыхвозм-но соверш-ие ур-ий.

Выбор формы зав-ти – спецификация ур-ия .

В лучае парной регр-ии он осущ-ся с помощью постр-ия коррел поля.

График

В осях коор-т y=M(У/x)+ε для зав-ти наносятся точки выборки х1у1; х2у2; х3у3…хiyi…xnyn. (xiyi) i=1;n.

Получили коррел поле или диаграмму рисования.

Возм-ны разл ситуации.

3 Графика

На 1) связь м/у х и у близка к лин-й.

На 2) ее нельзя предст-ть как лин зав-ть Скорее всего это парабола.

На 3) явная зав-ть м/у х и у отсут-т. Какую бы зав-ть мы не выбрали рез-ты моделир-ия б неуд-ны.

В случае множест регр-ии У=М(У/х1,х2…хn)+ε

Задача опр-ия вида зав-ти услож-ся.

Парная линейная регрессия.

Если ф-ия регр-ии линейна, то гов-т о лин регр-ии, кот-ая соот-т требованию линей-ти отн-но ее парам-ра.

В таких моделях теорет ур-ие регр-ии У=М(У/х)+ε =β0+β1х+ε, коэф-ты β0 и β1 наз-ся теоретич коэф-ми , ε – случ теорет откл-ие.

Для любой выбороч пары х и yi, yi= β0+β1хi+ε, т.е. индив знач-е у предст-ны в виде суммы 2-х компонентов: систем-ой β0+β1хi и случайной εi.

В соот-ии с общей генер сов-тью всевозм-х сочетаний у и х, модель запис-ся в форме У= β0+β1Х+ε и задача построения урав-ия сост-т в том, чтобы по имеющ-ся выборке огран-го объема (хi;yi) i=1,n получить эмпир ур-ие регр-ии = b 0+ b 1 x , где b0 и b1 – оценки для коэф-тов теорет ур-ия.

Тогда по данным выборки ỹi=b0+b1xi, получ-е знач-е для у б.отл-ся от теорет-го на нек-ую вел-ну, харак-ую точность оценки эмпир урав-ем теорет знач-ия завис-й переем-ой yi - i = ei . => в общем виде мы получ-м yi=b0+b1xi+ei.

Но т.к. оценки для коэф-та β0→b0 и β1→b1 расч-ся по конкр-м выборкам, то для разных выборок из одной и той же генер сов-ти м.б. получ-ны отличающ-ся знач-ия.

Задача сост-т в том, чтобы найти наилучшие из этих оценок.

Т.к. нас не интер-т разность знач-ий завис перем-й по теорет и эмпир ур-иям (мы не знаем теорет Ур-ия), то под откл-ми б.понимать М(У/хк)-ук (теорет откл-ие) = εк. εк- это откл-ие точки выборки от ее теорет вел-ны, а ук-ỹк=ек – (эмпир откл-ие) откл-ие эмпир знач-я от соотв-ей вел-ны, получ-ой по построй-ой модели. И не б.ставить около ук выборки.

К-во Просмотров: 458
Бесплатно скачать Реферат: Взаимосвязи экономических перемененых