Реферат: Задачи Лоповок

76. Постройте треугольник АВС по вершине А и прямым ! 1\ и 1г, на которых лежат биссектрисы углов В и С треугольника.

Признаки параллельности прямых

77. При пересечении прямых АВтя. СВ прямой I образовались 8 углов, из которых 4 — равные тупые углы. Параллельны ли прямые АВ и СО?

78. Докажите, что два перпендикуляра к сторонам угла, который меньше развернутого, пересекаются.

79. На рисунке 11 даны величины углов В, С, О, Е. Парал­лельны ли прямые АВ и ЕР?

80. Две прямые параллельны. Две другие параллельные прямые пересекают их в точках А та В, С та О. Равны ли треуголь­ники АВС и ОСВ?

81. Прямые АВ и СО параллельны. Прямая пересекает их в точках Е и К. Общий перпендикуляр параллельных прямых делит пополам угол между ЕК и биссектрисой угла ВЕК. Найдите /- СКЕ.

82. Как с помощью шаблона прямого угла разделить попо­лам данный отрезок?

83. Как с помощью шаблона острого угла построить перпен­дикуляр к данной прямой в данной точке?

84. Края линейки параллельны, ее ширина меньше отрезка АВ. Как с помощью этой линейки разделить пополам отрезок АВ?

85. Как с помощью линейки с параллельными краями построить перпендикуляр к данной прямой, проходящий через данную точку этой прямой?

86. Даны три параллельные прямые и точка М. Постройте прямую, проходящую через точку М так, чтобы разность длин отрезков, отсекаемых на этой прямой данными параллельными прямыми, была равна а.

Сумма углов треугольника

87. На сторонах угла А отложены равные отрезки АВ и АС. Из В и С опущены перпендикуляры на стороны угла. Докажите, что точка пересечения перпендикуляров лежит на биссектрисе

угла А.

88. По данным рисунка 12 определите, есть ли там парал­лельные прямые.

89. Равны ли равнобедренные прямоугольные треугольники, периметры которых равны?

90. Стороны двух треугольников соответственно перпенди­кулярны. Равны ли углы этих треугольников?

91. ВМ и СМ — биссектрисы внешних углов при основании равнобедренного треугольника АВС. Точки А\ и А-г симмет­ричны А относительно названных биссектрис. Докажите, что А АА\Ау.— равнобедренный.

92. Внутренний угол треугольника равен разности двух внешних углов, не смежных с ним. Докажите, что этот треуголь­ник — прямоугольный.

93. Отношение двух внутренних углов треугольника 2:3, а внешних углов при тех же вершинах —11:9. Найдите величи­ну третьего внешнего угла.

94. Точка М находится внутри треугольника АВС. Найдите сумму углов АМВ, АМС и ВМС.

95. Равнобедренные треугольники равны, их высоты, прове­денные к основаниям, совпадают. Как делятся, пересекаясь, их боковые стороны?

96. Постройте треугольник по двум углам и разности сторон, лежащих против этих углов.

97. В треугольнике АВС АС == ВС. На этих сторонах отме­чены такие точки В, Е, Р, что ВВ == ВЕ = ЕР == РС '== АВ (рис. 13). Найдите углы треугольника АВС.

98. Биссектрисы внешних углов треугольника АВС попарно пересекаются в точках 0\, Оч, Оз. Докажите, что А С^ОгОз остро­угольный, и выразите его углы через углы треугольника АВС.

99. Биссектрисы двух внутренних углов остроугольного треугольника пересекают противолежащие стороны под углами 63° и 81°. Найдите углы треугольника.

100. Биссектриса угла при основании равнобедренного тре­угольника АВС отсекает равнобедренный треугольник. Опреде­лите градусные меры углов треугольника АВС.

101. Один из углов треугольника равен полу сумме двух Других, его стороны относятся, как 1:2. Найдите величины углов треугольника.

К-во Просмотров: 903
Бесплатно скачать Реферат: Задачи Лоповок