Реферат: Задачи Лоповок
103. В треугольнике АВС АВ = ВС, /-В = 20°. На стороне АВ взята такая точка М, что ВМ == АС. Найдите /- МСА.
104. В равнобедренном треугольнике АВС /- В == 100 . Внутри треугольника взята такая точка М, что ^- МАВ == 10°, ^_ М&А = 20°. Найдите ^. ВМС.
105. Может ли пластинка иметь форму такого равнобедренного треугольника, чтобы ее можно было разрезать на 5 треугольных частей с такими же углами, как у начального треугольника?
Прямоугольный треугольник
106. Высота, проведенная к боковой стороне равнобедренного треугольника, делит пополам угол между основанием и биссектрисой угла при основании. Найдите углы равнобедренного треугольника.
107. Докажите, что любой треугольник можно разрезать на равнобедренные треугольники.
108. Если острые углы прямоугольного треугольника относятся, как 1:3, то биссектриса наибольшего угла равна одному е з катетов. Докажите.
109. Постройте прямоугольный треугольник по острому углу и сумме гипотенузы с проведенной к ней медианой.
110. В треугольнике АВС /- А = 15°, ^ В == 30°. Докажите, что перпендикуляр СМ к АС делит сторону АВ на такие частя АМ и МВ, что АМ = 2 ВС (рис. 14).
111. Высота и медиана, проведенные из одной вершины треугольника, разделили его угол на три части. Найдите углы треугольника.
112. На прямой отложены отрезки АВ == 2, ВС == СВ =- 1, ВЕ = 2. Из точки М, находящейся вне этой прямой, все названные отрезки видны под равными углами. Определите градусные меры этих углов.
113. Желая доказать, что гипотенуза прямоугольного треугольника больше катета, ученик построил из вершины прямого угла ВАС такой луч АМ, что ^- ВАМ = — ^- С (рис. 15). Как он хотел доказать теорему?
114. Бильярд имеет форму прямоугольного треугольника Шар толкнули по биссектрисе острого угла. Отразившись отбортов в точках В, Е, К, шар вернулся по пройденному пути (рис. 16). Найдите острые углы треугольника.
115. Бильярд имеет форму прямоугольного треугольник? АВС. Шар толкнули по биссектрисе прямого угла С. Отразившись от бортов в точках К, Е, М, шар вернулся по пройден ному пути. Найдите острые угль! треугольника.
116. Гипотенуза прямоугольного треугольника в четыре раз;
больше проведенной к ней высоты. Найдите острые углы треугольника.
117. Д АВС — прямоугольный, биссектрисы его острых углов — ВВ и СЕ, отрезки ВК и ЕМ — перпендикуляры к ВС (рис. 17). Найдите /- КАМ.
11в. Из города М по двум прямолинейным дорогам выехали одновременно велосипедист и мотоциклист. Через 20 мин после выезда мотоциклист прибыл в пункт В» а велосипедист в пункт А, при этом А МАВ оказался прямоугольным. Еще через 30 мин путешественники были в таких пунктах С и О, что А МСВ оказался равносторонним. Через сколько часов после этого они окажутся » таких пунктах Р и Т, что А МРТ будет прямоугольным?
119. В прямоугольном треугольнике АВС АВ == Асг Внутри треугольника взята такая точка М, что /- МАВ == ^- МВА == == 15°. Найдите А. ВМС.
Окружность
120. Докажите, что из двух пересекающихся хорд, не проходящих через центр окружности, хоть одна не делится пополам.
121. Докажите, что из центра вписанной окружности каждая сторона треугольника видна под тупым углом.
122. Окружность касается гипотенузы и продолжений катетов. Докажите, что диаметр окружности равен периметру прямоугольного треугольника.
123. На сторонах прямого угла М отмечены такие точки А и В, С и В, что ВО == АВ 4- СВ. Докажите, что разность диаметров окружностей, вписанных в треугольники МВВ а МАС, равна АС.
124. Катеты прямоугольного треугольника а, Ь, гипотенуза
с. Докажите, что радиус вписанной окружности г == д ~ с . &
125. Постройте две окружности с центрами на данной прямой в касающиеся одна другой в данной точке М и касающиеся другой данной прямой Ь.
126. Окружности с центрами 0\ и Оу. касаются внешним образом. Окружность с центром Оэ и радиусом 12 см касается их внутренним образом. Определите периметр треугольника 010а0з.
127. Какую фигуру образуют все точки плоскости, из которых данная окружность видна под прямым углом?