Реферат: Задачи Лоповок

58. Периметр параллелограмма АВСВ 80 см. Биссектрисы углов А и В пересекаются в такой точке М, что сторона ВС делит отрезок АМ пополам. Найдите длины сторон параллелограмма.

59. В параллелограмме АВСВ из вершин В и О проведены по две высоты. Докажите, что середины этих высот являются вершинами некоторого параллелограмма.

60. Дан треугольник АВС. Какая фигура образуется центра­ми всех таких параллелограммов, у каждого из которых две стороны лежат на лучах АВ и АС, а одна из вершин находится на стороне ВС?

61. В выпуклом четырехугольнике АВС D сумма углов при стороне АВ 90°, АВ == СВ. Докажите, что середины диагоналей и середины сторон ВС и АВ являются вершинами квадрата.

62. Стороны параллелограмма 17 и 23 см. Биссектрисы всех его углов ограничивают четырехугольник КЬМН. Найдите его диагонали.

63. АВ — диаметр полуокружности с центром О, в точках А и В построены перпендикуляры к АВ. Касательная к полу­окружности в точке С пересекает эти перпендикуляры в точках В и Т; АС и ВО пересекаются в точке Е, ВС и ОТ пересекаются в точке М. Параллельны ли АВ я ЕМ?

64. АВСВ — выпуклый четырехугольник, середины его сто­рон — А\, В\, С\, В[. Середины сторон четырехугольника А\В\С\В\ — Л.2, В-г, Сч, Вч. Середины сторон четырехугольника АчВчСчВч — Аз, Вз, Сз, Оз и т. д. Укажите точку, которая нахо­дится внутри всех таких четырехугольников.

65. Средняя линия треугольника АВС образует со стороной АВ углы, вдвое большие углов треугольника при этой стороне. Найдите величины углов треугольника АВС.

66. Постройте треугольник АВС по положению точек А и В и точке, в которой продолжение медианы АВ пересекает описан­ную окружность.

67. АВ — высота прямоугольного треугольника АВС. Бис­сектрисы углов В и САВ пересекаются в точке М, а биссектрисы углов С и ВАВ — в точке N. Параллельны ли прямые МП и ВС?

Трапеция

68. Из какого наименьшего числа прямоугольных треуголь­ников можно сложить трапецию?

69. Докажите, что треугольную пластинку можно разрезать на три части, имеющие форму трапеции.

70. Докажите, что четырехугольную пластинку можно раз­резать на три части, имеющие форму трапеции.

71. Пластинка имеет форму равнобокой трапеции. Как раз­резать ее на три равные трапеции, если: а) одно основание вдвое больше другого, б) длины оснований 6 и 10 см?

72. Два противоположных угла трапеции относятся, как 2:3, а два других — как 3:5. Найдите углы трапеции,

73. Биссектрисы углов при большем основании трапеций перпендикулярны боковым сторонам. Найдите углы трапеции

74. Постройте трапецию, если даны прямые, на которых лежат ее боковые стороны АВ и СВ, середина диагонали АС и точка на прямой АВ.

75» Пластинка имеет форму трапеции, ее основания 6 .» 24 см, углы при большем основании по 60°. Как разрезать трапецию на пять равных равнобоких трапеций?

76. Пластинку в форме трапеции можно разрезать на четыре равных равнобоких трапеции. Определите величины углов этих трапеций.

77. Прямая отсекает от равностороннего треугольника тра­пецию, которая делится диагоналями на 4 равнобедренных треугольника. Найдите угол между диагоналями трапеции.

78. Три стороны трапеции равны. Окружность, построенная на большем основании, как на диаметре, делит боковую сторону пополам. Найдите градусные меры углов трапеции.

79. АВСО —<

К-во Просмотров: 904
Бесплатно скачать Реферат: Задачи Лоповок