Реферат: Задачи Лоповок

129. Даны окружность М точка М вне ее. Проведите через М прямую, пересекающую окружность в точках, расстояние между которым» равно с.

130- Постройте окружность, которая касается двух дан­ных окружностей, причем одной из них — в данной точке М.

181. Постройте треугольник АВС по основанию, высоте, проведенной к боковой стороне, и радиусу описанной окруж­ности.

132. Постройте треугольник по высоте и медиане, проведенным к основанию, и радиусу описанной окружности.

133. Постройте треугольник АВС, если дана прямая, "а которой лежит биссектриса угла А, и точка касания сторон АВ и ВС вписанной в треугольник окружности.

134. Постройте две окружности, каждая из которых касается одной из равных сторон треугольника и продолжений двух других сторон. Докажите, что эти окружности равны, а прямая, проходящая через их центры, параллельна основанию тре­угольника.

Вписанные углы

135. Докажите теорему о вписанных углах, пользуясь рисунком 18.

136. Треугольник АВС — остроугольный, ВМ и СМ — перпендикуляры к АВ и АС. Докажите, что точка М лежит на окружности, описанной около треугольника АВС.

137. О — центр окружности, вписанной в треугольник АВС. Докажите, что центр окружности, проходящей через точки А, В, О, лежит на прямой СО.

138. Два угла треугольника имеют величины 52° и 58°. Вписанная окружность касается сторон треугольника в точках К, Ъ, М. Определите величины углов треугольника КЬМ.

139. Один из углов треугольника 40°. Стороны этого угла видны из центра описанной окружности под углами, которые относятся, как 2 : 3. Найдите эти углы.

140. Найдите углы треугольника, две стороны которого видны из центра описанной окружности под углами: а) 122° и 104°; б) 29° и 47°.

141. 0\ и Оч — центры вписанной и описанной окружно­стей треугольника АВС. Зная, что ^- АО\В = //- АОчВ, най­дите /- С.

142. АА\ и ВВ\ — высоты треугольника АВС. Постройте треугольник АВС по точкам А\, В\ и прямой АВ.

143. Постройте прямоугольный треугольник по гипотенузе и медиане, проведенной к одному из катетов.

144. Постройте треугольник АВС по высоте АВ, углу между ВС и медианой АЕ, радиусу описанной окружности.

145. Прямая ВЕ проходит через вершину А треугольника АВС и касается описанной около треугольника окружности. Докажите, что углы ВАВ и ЕАС равны соответствующим углам треугольника.

146. В окружность вписан равносторонний треугольник АВС, М — точка окружности, находящаяся внутри угла АСВ. Докажите, что МА+ МВ = МС.

147. Вершины треугольника АВС находятся в точках I, V, VIII циферблата часов. Построены высоты АМ и СВ и перпендикуляр ВЕ к АС. Докажите, что АЕ = СМ (рис. 19).

148. Высота, биссектриса и медиана, проведенные из одной вершины треугольника, разделили его угол на 4 равные части. Найдите величины углов треугольника.

149. Высота и медиана, проведенные из одной вершины треугольника, разделили угол на части, которые относятся, как 4:7:4. Найдите величины углов треугольника.

150. В треугольнике АВС на стороне ВС есть такая точка М, что ВМ = 2 МС и А- АМВ == 60°. Зная, что ^ ВАС = 60°, най­дите величины остальных углов треугольника.

ВОСЬМОЙ КЛАСС

Четырехугольник

1. В четырехугольнике проведены его диагонали. Сколько равных отрезков могло оказаться на рисунке?

2. В четырехугольнике проведены его диагонали. Какое наибольшее число прямых углов может оказаться на рисунке?

3. Верно ли, что среди углов выпуклого четырехуголь­ника всегда найдется хоть один прямой или тупой угол?

4. Постройте четырехугольник АВСВ по углам А и. В, сторонам АВ, АВ и сумме двух других сторон.

К-во Просмотров: 910
Бесплатно скачать Реферат: Задачи Лоповок