Реферат: Зонная теория твердых тел
Содержащую электроны зону с наибольшей энергией, называют валентной зоной. Первую зону с незанятыми энергетическими уровнями называют зоной проводимости, так как электроны в этой зоне участвуют в переносе заряда. В проводниках валентная зона и зона проводимости либо совпадают, либо перекрываются. В изоляторах и полупроводниках эти зоны отделены друг от друга.
Если материал находится не в состоянии основном, а обладает дополнительной энергией – тепловым возбуждением. Эта энергия играет важную роль в свойствах электропроводности.
Проводник в основном состоянии, если отсутствует тепловая энергия т.е. Т = 0. Зависимость вероятности заполнения электронами энергетических уровней при КТ = 0 от энергии e отсчитывается от дна зоны.
для всех значений энергии, соответствующих заполненным уровням.
Энергия, отсчитываемая от дна зоны, при которой величина f(E) скачком изменяется от 1 до 0, называется энергией Ферми eF В данном случае т.е. работе выхода
При наличии тепловой энергии некоторые электроны возбудятся и перейдут из первоначальных состояний на свободные энергетические уровни. Для электронов с энергией вблизи eF такие переходы более вероятны, так как требуется меньшая энергия возбуждения. Соответственно, и вероятность заполнения состояний уменьшается с ростом их энергии. Если электроны не подчиняются принципу Паули, то их распределение по энергии описывается классическим распределением Максвелла – Больцмана
Распределение, учитывающее принцип Паули, называется распределением Ферми – Дирака
Распределение Ферми – Дирака при различных значениях КТ показано на рисунке. Здесь энергия Ферми имеет смысл энергии уровня, которому отвечает 50%-ная вероятность заполнения.
Число свободных уровней (вакансий) ниже уровня Ферми, и их распределение относительно eF совпадает с числом и распределением заполненных состояний выше уровня Ферми. Эти состояния отвечают тепловому возбуждению электронной системы и обеспечивают появление кинетической энергии направленного движения. С ростом температуры (увеличение КТ) уменьшается наклон кривой f(e) вблизи eF и увеличивается вероятность заполнения состояний с большими энергиями.
Из выражений для f(E, K, T) видно, что проводимость материалов сильно зависит от температуры.
В полупроводниках положение уровня Ферми соответствует формально потолку валентной зоны, но это неверно. Пусть с потолка валентной зоны (с энергией eV ) отдельный электрон от возбуждения перешел на дно (с энергией eC ) пустой зоны проводимости.
eV – потолок валентной зоны
eC ? ??? ???? ????????????.
На рисунке уровень Ферми находится в середине запрещенной зоны, учитывая симметрию распределения Ферми – Дирака относительно энергии Ферми eF и очевидную симметрию функции f(E) в промежутке между потолком валентной зоны и дном зоны проводимости.
* Определим вероятность перехода электрона в зону проводимости для алмаза, ширина запрещенной зоны eg »5,5 эв. при комнатной температуре КТ = 0,026 эв. для дна зоны проводимости
Таким образом, вряд ли даже один из каждых 1044 электронов в валентной зоне будет иметь энергию, достаточную для перехода в зону проводимости при комнатной температуре. Поскольку каждый моль вещества содержит около 1024 атомов. Следовательно, алмаз – хороший изолятор.
Определим для вероятность при КТ = 0,026 эв. (комнатная)
В этом случае приблизительно один валентный электрон из миллиона может при возбуждении перейти на дно зоны проводимости и в зоне проводимости можно найти электроны.
Их будет значительно меньше, чем в случае проводника, у которого f(e) в зоне проводимости составляет порядка единицы. Однако в зоне проводимости полупроводника все же имеется достаточно электронов и они вносят вклад в электропроводность полупроводника. В полупроводниках f(e) сильно зависит от температуры. Возрастание температуры на 100 К относительно комнатной (3000 К) т.е. всего на 3% вероятность перехода электронов в зону проводимости увеличивается приблизительно на 30%. С уменьшением ширины запрещенной зоны чувствительность полупроводников к температуре возрастает.
Возбуждаясь с переходом в зону проводимости, электроны оставляют после себя в валентной зоне незанятые состояния или «дырки». Заполненная первоначально валентная зона становится частично заполненной и, следовательно, в ней возможны энергетические возбуждения электронов, хотя очень небольшого числа. Дырка ведет себя подобно положительно заряженной частице, которая может участвовать в электрической проводимости. Реальному движению электронов соответствует более или менее свободной фиктивное движение дырок в направлении внешнего электрического поля.
Дырки реагируют на внешнюю силу (например, на внешнее электрическое поле) не так, как свободные электроны, поэтому, чтобы учесть влияние других атомов на подвижность дырок, им приписывают эффективную массу m*, которая немного больше эффективной массы электрона.
Плотность тока электронов и дырок
где n – концентрация электронов,
р – концентрация дырок,