Шпаргалка: Лекции по статистике

Схематично средние величины можно представить следующим образом:


Степенная средняя

Эта формула задает не взвешенную или простую среднюю степенную. Она применяется для не сгруппированных данных. Для сгруппированных данных применяется следующая формула

Рассмотрим различные значения q.

q =-1 получаем среднее гармоническое

q =0 среднее геометрическое

q = 1 среднее арифметическое

q = 2 среднее квадратичное

Справедливо следующее неравенство для средних величин

Рассмотрим среднее арифметическое:

Отметим наиболее важные свойства среднего арифметического:

если из всех значений признака вычесть некоторую константу С,

1. если все значения признака умножить на с, то и среднее умножается на С.

2. пусть исходные данные представлены следующим образом , т.е. данные разбиты на q групп . Взвешенное среднее арифметическое из групповых или частотных средних будет равняться общей средней.

4. сумма взвешенных отклонений значений признака от общей средней арифметической равна 0:

5. сумма квадратов взвешенных отклонений значений признака от меньше аналогичной суммы от любой другой меры положения

, разность между этими суммами равна .

Рассмотрим среднее гармоническое q=-1.

Свойства среднего гармонического:

1. взвешенная гармоническая из групповых гармонических равна общей гармонической .

Применение того или иного вида весов зависит от представления значений признака.

Примеры.

Таким образом, если между показателями существует обратная зависимость как например между числом изготовленных деталей и затратами времени на одно изделие, то надо использовать среднее гармоническое. А если между показателями существует прямая зависимость, например между индивидуальными зарплатами и фондом зарплат, то применяется среднее арифметическое.

К-во Просмотров: 476
Бесплатно скачать Шпаргалка: Лекции по статистике